Why kids need ecology now!
Teachers, as well as science majors and graduate students, need to understand the process of science. And they need to be able to argue it, discuss it, suggest novel perspectives, give and respond to criticism. Does our inservice education deliver this to us? Especially critiques of current practice? The Vision of the Framework for K-12 Science Education Vision table and, some of the descriptions of the New Generation Science Standards indicate that all science teachers will need to understand both the process of science and the process of student-centered science education.
by Jim Martin
CLEARING Magazine Associate Editor
lobal warming; hot topic, little consensus. What if students were learning the ecology and environmental science they needed to understand the nature of global warming: its history during the tenure of life on Earth, the similarities and differences between this episode we’re experiencing now and others, the nature of food webs and their connections to the concept of species diversity, the connections between temperature and habitat? What would be the effect of this work on students? They are young citizens, and will be among the adults, as will their own children, faced with the results of our generation’s effect on global climate. How much curricular time do we devote to these topics? Are we allowed to? They’re definitely good science; but, are they currently culturally correct education?
Do these topics conform to our expectations of curricula meeting New Generation Science Standards (NGSS)? The NGSS have addressed a relatively small part of their standards to ecology. Students in schools today, and their children, need to know ecology at a level which makes it, especially at the conceptual level, clear and comprehensible; fits the understandings we need to cope successfully with the effects of global warming. They’ll be dealing directly with these effects in their lives. Will they understand and use what they know of, say, food webs and the effects of global warming? Concepts like thermal tolerance? Species replacement? The concept and applications of niche? What can we do to help? Knowledge of environments and their biota are important components of our response to global warming. We do a better job of responding to issues when we understand their pieces.
While the NGSS call for active learning in their delivery, there is no advice in the Resources Section at the NGSS web site (http://www.nextgenscience.org/resources) that assists teachers to employ active learning and learning for understanding in the classroom. They do provide brief descriptions of active learning, but provide no examples. Nor do they provide inservice instruction that will prepare teachers to engage students in active learning and acquire the requisite curricular understandings they will need to do the job well. We need to attend to this.
At the end of the NGSS Resources section[1], there is a table at the end of the NGSS Resources section which describes changes in the way science will be taught when it is aligned with the standards; how science was once taught, and how it will be taught as the NGSS is implemented. The transition moves learning from teacher-centered delivery to active, student-centered, constructivist, self-directed inquiry on the part of students, their preferred delivery modality. My experience teaching, and working with teachers, tells me that this transition is difficult, and needs time and support to do effectively. Done by confident teachers, it is always effective, involves and invests students in their learnings, and empowers them as persons. The didactic, teacher-centered modality is effective when you’re teaching how to use a dissolved oxygen probe, but for most learning, the constructivist, student-centered, active learning modality works best.
I’d like to spend some blogs describing how this transition in delivery modalities might work at the various grade levels. To facilitate this, I’d like to discuss a paradigm which is easily assimilated by humans of all ages, and which helps some of the more esoteric ecology standards make down-to-earth sense: food webs. (Note: Food Webs are also called Food Cycles. Both Food Webs and Food Cycles are composed of Food Chains, which show the chain of animals which eat a particular Producer. I favor Food Web because it infers a complex of interactions, which are the means for maintaining ecosystems.)
We’ll start with students’ (and your) own food chain. I decided to do this to illustrate the process of constructing a food web. After that, we’ll do a food web on a school ground or neighborhood for our initial food web, and amplify it as we move up the LS2 grade levels from K to 12. While we’re working, we’ll use the Vision of the Framework table to see how active learning works, and what we can do to facilitate it. I suppose that this means that there will be many blogs to follow.
Here’s how I constructed my own food chain (Since I’m the only consumer eating what I eat, a food chain will have to act as my food web!): I wrote down what I ate for each meal for a day, then looked up on all package and can labels any ingredients which were included in the prepared foods I ate. They were all derived from plants, so I placed all of the plant species’ names on the bottom row of the diagram, (Figure 1), and the things which eat them above that row. Next, I drew lines from each plant species to what eats it. (Some draw lines from the eaters to what they eat. Either type of placement does the job.) In this case, that was always me. I’ve added salmon and mackerel to my food chain, even though they don’t eat the plants I’ve listed. I did this because I eat those fish too. If I wasn’t on a vegan diet for my health, the list of one label’s ingredients would make my food chain too cumbersome to draw. As it is, the ‘web’ looks like a mess.
Figure 1. My Personal Food Chain. First Pass.
If you have started your own food web, and got this far, you might entertain the same feeling. Why do you think this, my personal food web, seems so confusing? Unnatural? Perhaps because it is. In the first place, it is a food chain, not a food web. If I were to trace each ingredient to the place where it lived, there would be very few which lived near where I do. Is this true of all organisms living in ecosystems on Earth? Do you know how to find out? Do you know enough about ecosystems to make informed opinions and decisions about our response to global warming? Should our children’s educations provide them with this capacity?
What else do I eat? Some of the food sources listed, prepared or simply harvested, contained microbes, insects, etc., either whole or in part within them. That’s just how food happens. How do I account for them? Another fact about my food chain: The mackerel and salmon I eat are part of other food webs. Do I show them? While they are consumed by me in my own food chain, I affect theirs. Migratory animals’ food webs do this as they move from one ecosystem to another, but I stay where I am. (They become transient parts of those food webs. I’m a permanent part of mine. But mackerel never swim past my house!) These questions suggest to me that my food chain needs attention. (Exploring this might present a nice activity for students of any age.) If we are to survive the effects of over-population and global warming, I think a first thing to understand is that we are members of an ecosystem, and need to be contained within it. At least, as much as is possible. Constructing a food chain is the first step in this process.
So, what will I do? I’ll cut down my producers (plants) to those which grew here. I’ll pretend all of the salmon are from here, but eliminate the mackerel. What does it look like now? (See Figure 2) You may see that this is complex. What I’ve written so far may not seem like exploring what students need to know about species diversity and the connections between temperature and habitat. I think that exploring those two topics will work best if we can envision their effects on food webs. We’ll go through this a step at a time as I do mine, and expand to a food web in a riparian area. (Is this what I will do?)
Figure 2. My Personal Food Chain. Second Pass.
I could show what Salmon eat, and that would make this a more realistic food web; more informative by placing me within an ecosystem. And I could add the herbivores who also eat the oats in my food chain. (Rest of paragraph needs work.) But, it wouldn’t be Mine! Instead, I would begin to become part of a food web based on the ecosystem I live within. Hmm . . . . Closer, perhaps, to where I should be? A further step: I can add other animals which eat the producers I do, and animals that eat them. I could even show the organisms which decompose them, and those who redistribute our parts when we die or lose them. A more realistic food web, and one which would make me a better-informed citizen when I am engaging or reading about our efforts to compensate for the effects of global warming. Just what today’s students need.
[1] (http://www.nextgenscience.org/sites/ngss/files/15-041_Achieve_ScienceChartNewVision.pdf)
This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests, and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”
Thanks, Gita. Yes, we need passionate writers. And passionate teachers. That means that we all need to help science teachers gain the confidence in their teaching that is the foundation of passion for teaching. I’d be interested to hear what you are involved in, re teaching.
Thanks, Gita. Yes, we need passionate writers. And passionate teachers. That means that we all need to help science teachers gain the confidence in their teaching that is the foundation of passion for teaching. I’d be interested to hear what you are involved in, re teaching.