Can We Learn What Science Inquiry Does For Us? What To Teach; And How?


by Jim Martin

n a previous blog, a student, Maria, noticed a salmon fry darting toward a rock covered with periphyton, a thin colony of algae which supports microbes and invertebrates living in it. Her eye lit up as she became aware of it; a wonderful learning moment, the kind which lights up our brain.

How do you learn to recognize when Maria’s eye has noticed something, and made a conceptual connection with it? What experiences ought you have to recognize that moment and use it effectively? Then to follow up? How did we get here in the first place? We’re exploring the use of inquiries outside the classroom to discover how to use active learning effectively. And, while doing that, to discover and use the curricular content embedded in the world outside the classroom. How do we help teachers become comfortable with this?

Does what we teach reside solely in our curricular materials? 

We do inquiries; do we ever ask what inquiries do for us? One thing that student-directed inquiries do is to use the way our brain learns best, which should be driving our deliveries. When we begin a new learning, it will more than likely possess latent connections to previous conceptual learnings stored in associative memory in our brain. If we can organize a student’s environment so that this might happen, then we have set up an environment where conceptual learning will occur. Our brain is an autonomous learning machine when it encounters something interesting in the world about. We set this in motion when we organize a student’s environment so that a question will more than likely emerge from it. When this becomes part of the foundation our teaching is based upon, conceptual learnings become a normal product of our classrooms.

Some students, like Maria, will rather quickly note a connection between what they observe at the moment, and what they already know. These students, engaging what Lev Vygotsky described as a zone of proximal development, will provide, by what they say and do, the pieces of the puzzle for those who have not yet attained the new concept; not yet seen the connection between what they observe, and what they already know. Yet, whose brains already hold all of the relevant pieces. This capacity to see and make connections is something I’ve observed that all students will develop as long as they are in an environment where active learning is routinely engaged. Since self-directed inquiries stimulate our brain to engage in critical thinking and conceptual learnings, that is precisely what inquiries do for us. Build autonomous, thinking brains.

Does conceptual learning only occur when students engage curricular materials in our classrooms?

How do we get there, the place where autonomous, thinking brains develop? You have to know the things students will encounter as they learn, then direct them to those pieces which have the capacity to engage human interest. In the previous blog, we discussed the idea of a teacher in-service workshop in which teachers, environmental educators, and a regional environmental education center might be used to help classroom teachers become comfortable with science inquiry in a natural environment. In this pilot workshop, we posited starting with a science inquiry training in which teachers would engage concrete entities in a natural area. Those who I have worked with in workshops like this have always experienced the way that simply engaging teachers in particulars of the place they are in stimulates questions which are easily turned into effective inquiries.

Noticing something which catches your interest has a way of stimulating you to want to know more about it. Everything could end right there, and you might continue on your way. If, as you move along, you encounter another of the thing which caught your interest, you will notice it, and may even raise a question about it. This is the way your brain works when it is engaged in conceptual learning. We need to learn to use it routinely in our teaching. It leads to long-term conceptual understandings. Not items to recall on a test, but conceptual information which seems just common sense.

If you were a participant in the in-service workshop I mentioned above, and you encountered something interesting which raised a question in your mind, there would be teacher-mentors and environmental educators there to help you locate resources, etc., but not to tell you what to think and do to answer it. Your brain, not theirs, is the one that’s learning. (Likewise in our own classrooms; the students, not we, need to do the learning!) Then, there would be a follow-up on questions and/or insights entrained by the science inquiry process. (My own students would review and research more information than I could teach via a conventional deliveries.) The important thing is that much of what you find and process in your brain will remain as conceptual associative memory, available on demand. Even when, in your classroom in May, you ask students to recall what they learned when they did such and such an inquiry in October. It does work.

Maria went on to learn about the salmon fry and periphyton colonies she met while she was on site at the stream. Most of what she learned came from her observations in the real world, researching information about them on the web, and reading in the texts in her classroom. More learning than a teacher can deliver by teaching the whole class one piece at a time. The trick is to organize the work so that each student or group contributes a nice piece of the overall learning. Sharing brings it all together. Enough teachers, and schools, have successfully adopted active learning deliveries that we ought to be encouraging it in our schools, our districts, and our state departments of education.

Many classroom teachers don’t have a strong background in the science they teach. We, the classroom teachers, need to develop a systemic way to build a strong content background in the concepts that we teach. Formidable hurdle, but it can be done. Since I first started tracking it in the early 1970s, about half of U.S. teachers have had little or no college-level preparation for the content they teach. We’re assigned to teach it anyway because there’s no one else to do it; we’re coaches who need a full-time salary, our principal assigns us to teach it, etc. How would our tech sector do if they applied the same staffing model? For now, we are the ones who have to take up the slack. We need to work together to build our capacity to effectively engage our students in the excitement and comprehension of science in the real world. We may not solve the problem, but I know from experience that we can make a dent in it. We’ll take that up as we go along.

jimphoto3This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests, and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”