A Year in the Watershed
There is no doubt that if you want to get students truly excited about what they are learning, ask them to tackle a real-world question or problem — ask them to solve something that is relevant to their lives.
by Jean M. Wallace
It is no surprise that children learn best by doing. And, when they seamlessly integrate across subjects and spend ample time working to find solutions to real problems that will improve lives, fulfill needs, and make our world a better place, their learning reaches a much deeper level. During my 20 years in a leadership role in experiential education, establishing partnerships and supporting hundreds of teachers and thousands of students in authentic learning, I witnessed this success first hand. There is also no doubt that if you want to get students truly excited about what they are learning, ask them to tackle a real-world question or problem — ask them to solve something that is relevant to their lives. In using this approach, students come to realize that what they are doing in school really does have meaning.
Whether describing this learning process with terminology such as STEM, STEAM, Project-Based Learning, Problem-Based Learning, or EIC (Environment as an Integrating Context — the process used by my former team as outlined below), it is the alignment of the content (the “what”) and the process (the “how”) that drives these successful learning models. Integration is critical, as it is the bonding of content and process that strengthens the structure of learning for students. Rather than teach in isolation, teachers and schools should model the 21st century skills we want our students to acquire by collaborating, cooperating, and communicating across disciplines to make learning more meaningful in all subjects. The effectiveness of using the environment as the foundation for interdisciplinary learning is not new to education and is supported by research.
Founded in 1995, the State Environment and Education Roundtable (SEER) worked with 16 state departments of education to develop Environment-Based Education (EBE) as a standards-based instructional strategy to engage students in “real-world” learning experiences. Over 40 schools took part in this national study, which resulted in the 1998 publication of Closing the Achievement Gap: Using the Environment as an Integrating Context for Learning (Lieberman & Hoody, 1998). As was the case with the national EIC research study, our own EIC program was extremely successful and proven to close the achievement gap.
Environment = Authentic Learning
Moving from teaching in isolation to teaching across disciplines can be challenging, but my firm belief was (and still is) that a powerful and deep understanding of content coupled with a meaningful and authentic process of student engagement results in deeper learning for children.
Therefore, when building an curriculum focused on authentic learning, it made perfect sense to use Pennsylvania Environment & Ecology (E&E) Standards as a foundation on which to build an integrated and student-centered curriculum: one that would shape the framework for active, authentic, community-based science teaching and learning. Along with cross-curricular, real-world, rigorous content, an E&E-based program offers students the opportunity to engage in service learning and civic action, creating responsible and caring global citizens. This is evidenced in the introduction to the E&E standards, which reads as follows:
“Environment and Ecology is grounded in the complexity of the world we live in and our impact on its sustainability. The human interactions with the ecosystem and the results of human decisions are the main components of this academic area. Environment and Ecology examines the world with respect to the economic, cultural, political, and social structure as well as natural processes and systems. This integration across systems is what sets this academic area apart from all others.” (Pennsylvania Department of Education, 2001)
Starting in Kindergarten, content outlined in the E&E standards also became the foundation for literacy acquisition and was used to generate enthusiasm in our youngest readers. As they were learning how to read, they were connecting what they were reading to the real world around them. The content outlined in these standards formulated a rich vocabulary upon which students could build as they progressed through the curriculum. One example that comes to mind is the topic of Agriculture, which was introduced in Kindergarten and then reinforced in 3rd grade in a multi-disciplinary, multi-week unit of study. Classroom libraries were stocked with vocabulary-rich books, and learning was enriched by field studies to area farms, nature centers, streams, rivers, and museums.
The June 2014 Progress of Education Reform Report issued by the Education Commission of the States, reaffirms the success of applying this early science literacy approach in an authentic learning environment: “Science interactions support vocabulary development by exposing children to new words in meaningful context. Exposure to rich vocabulary words predicts vocabulary development, which predicts reading achievement.” The importance of early science literacy acquisition is summed up nicely in this same publication: “Education leaders should turn a critical eye on the science teaching and learning expected for early education in their school, district or state, then determine whether there is any evidence that children and their teachers are receiving the instructional opportunities they need and deserve.”
Creating the EIC Curriculum
But how and where do you begin when creating an integrated curriculum? For our team, utilizing the E&E standards for content; the interdisciplinary, student-centered process of the EIC Model; a strong emphasis on 21st century skills; and backwards mapping became the perfect collective starting point. Our guide was Dr. Patricia Vathis of the Pennsylvania Department of Education, who is an expert in standards, interdisciplinary learning, and Understanding by Design. As a K–8 team, we began the curriculum-building process by going through each E&E standard statement and unpacking and understanding its content. After completing this, we moved on to Science and Technology, and then to Social Studies, which included History, Geography, and Civics and Government. We identified the content that “anchored” each standard statement and how each grade would be responsible for either introducing that content (I), reinforcing it (R), or bringing the content to proficiency (P).
As we were completing each matrix and assigning a color code to each grade, we were also looking for opportunities to connect content across disciplines to create big ideas for comprehensive, interdisciplinary units of study. Once our team completed a matrix for each of the content area standards, time was allocated for teachers to meet and plan with their grade level partners and teachers from different grade levels and disciplines. Everyone worked from the matrices they, themselves, created. Schedules were designed so that team-teaching could occur several times each week, allowing teachers to see and hear how each overarching topic was being presented through the lens of another discipline.
EIC in Middle School
In some ways, the 5–8 team had a more difficult challenge than the K–4 team, since our middle school students in 5–8 rotated through different teachers and subjects. The teachers effectively met this challenge by working together to design units of study that spanned several months, with each content area well represented. For example, one unit was titled “Disease and its Impact on Philadelphia,” and was taught over a three-month period. In Science class, students investigated how vector species transmit diseases, while in Language Arts the students were reading the book Fever by Laurie Halse Anderson (2000), a historical fiction novel documenting the 1793 yellow fever epidemic that plagued Philadelphia. In Social Studies, the students were mapping out historic Philadelphia and reading and writing about a time in local history when this epidemic took many lives. In Technology, students created their own newspaper and documented the impact of the disease outbreak by writing obituaries and providing information to their imaginary community. Finally, in Art, students designed a 2-D protist from which they created a 3-D model. As students were learning across disciplines, teachers were actively teaching across disciplines. Amazing!
EIC in Elementary School
Just one example of authentic, interdisciplinary learning that was so successful during my years in school leadership was “A Watershed Year,” when each year our 4th grade students were immersed in a year-long, interdisciplinary study of the Delaware River Watershed. Students were challenged to answer the overarching question: Where does your drinking water come from and where does your wastewater go? They began by investigating the history, geography, geology, science, chemistry, and ecology of our local freshwater streams and the surrounding watershed. During their downstream journey, students interacted with experts in local history, drafted a “Water Bill of Rights,” debated ecology versus economy, conducted field studies with the Philadelphia Water Department, mapped out their local watershed, and learned from the Army Corp of Engineers how to effectively engineer a dam.
Students also documented their journey and presented their findings to various audiences. Utilizing digital technology, they even created an interactive, informational walking tour for visitors along the trails at the local historical society. The students’ Watershed Year ended with an exploration of the Delaware Estuary and Atlantic Ocean ecosystems where they discovered the ecological diversity of aquatic life in these brackish and saltwater environments. Their final real-life adventure in learning was a three-hour voyage aboard a trawling vessel out of Cape May, New Jersey where they cast nets into the ocean and hauled in their catch, while working side-by-side with a team of marine ecologists.
Ongoing Improvements and Growth
Professional development for teachers was meaningful, focused, and ongoing. In-service days during the school year were dedicated to curriculum development, and each summer our teachers would attend the Pennsylvania Governor’s Institute for Environment and Ecology. This Institute offered a week-long, residential learning experience that took place both indoors and outdoors. Enhancing the knowledge and skills of teachers through deep-rooted learning experiences inspired our teachers to become even better at creating and implementing authentic learning experiences for their students.
While standards dictated “what” would be taught, the process of learning was designed and reinforced by our teachers. They used content — E&E standards-based content — and the EIC practices to drive instruction. These experiences not only resulted in strong academic achievement, but they ensured outcomes of global citizenship through student empowerment and environmental civic action. Our K–8 EIC framework became the solid academic foundation on which we grew our program from 150 students to over 700 allowing us the financial and community support to build a 20 million dollar school and campus designed for outdoor learning. An amazing accomplishment that many said could never be done!
Positive Impacts
In the end, our state standardized test scores reflected the success of our EIC Model and its interdisciplinary framework. More importantly, these scores represented how immersing students in deep-dive, long-term, interdisciplinary research projects can be a successful approach for all students. As just one example, 90%–96% of our 4th Grade students achieved, on average, the highest level in the Pennsylvania System of School Assessment (PSSA) Science test. Our special education students and historically underperforming students thrived in this atmosphere of real-world, interdisciplinary learning. Our school was rated as a top performing school locally and state-wide, and ranked internationally with schools in Finland.
Throughout my years working with an incredible team, our EIC curriculum continued to evolve and was revised by our teachers. Success was contagious! Teachers were motivated and students were energized as we immersed ourselves in the study of the environment. We came to realize that doing meaningful work in an authentic environment to conserve our basic needs — the water we drink, the air we breathe, and the food we eat — was a bond that we shared and something that is relevant to us all.
___________________________
Jean Wallace was the CEO of the award-winning Green Woods Charter School, a K–8 public charter school in Philadelphia, PA. During her tenure as CEO, Green Woods was recognized locally, regionally, nationally, and internationally for its innovative approach to learning as well as its academic achievement. She is now consulting for schools and organizations who want to take learning outside.
Prior to her work at Green Woods, Jean served as the regional Director of Education for Earth Force, Inc. (www.earthforce.org). As the Director of Education for Earth Force, Jean supported hundreds of teachers and thousands of students in service learning and civic action projects focusing on local and regional environmental issues.
Education is a second career for Jean. As a parent, Jean was an active volunteer in her daughter’s private school setting and came to recognize the vast differences between some public and private school learning environments. She sought out a second career in education to offer public school students authentic, real-world learning opportunities similar to those her own daughter experienced.
This article is dedicated with gratitude to Dr. Patricia Vathis, retired Environment and Ecology Coordinator for the PA Department of Education, and the incredible teachers and staff who made the impossible, possible.
References
Anderson, Laurie Halse. (2000). Fever, 1793. New York, NY: Simon & Schuster Books for Young Readers.
Education Commission of the States (June, 2014). Progress Report for Education 18 (2). Denver, CO: ECS.
Lieberman, G., & Hoody, L. (1998). Closing the achievement gap. State Education and Environment Roundtable Report. Poway, CA: Science Wizards.
Pennsylvania Department of Education (2001). Introduction to the Pennsylvania academic Standards for environment and ecology. Retrieval from URL www.education.pa.gov
What an outstanding article. We have continued to use many words to describe EIC but the bottom line is teaching our students to value every aspect of the planet they live on is critical. Many years ago while preparing for a presentation I wrote “if you can’t breath the air, drink the water or eat the food it doesn’t matter if you can read, write or figure!” I hope everyone who reads this article will pause and reflect on what they are teaching and how can they make a difference.