Finding Dragons

Finding Dragons

by Erin Banks Rusby rerinted from the Idaho Press

n the summer of 2023, a group of high school students and adults converged over their shared interest in science and dragonflies.

Known as the Finding Dragons program, the effort aimed to provide hands-on, publishable research experience to high school students and adults, while answering some key questions about the health and history of dragonfly species — offering clues into how they have weathered stress in the past, and how they might be affected by climate change.

Their findings so far have been published in the International Journal of Odontology, with the students listed as co-authors, and a second currently under review for publication.
Jisong Ryu, a junior at Timberline High School, is interested in working in the environmental science and public policy field. Participating in the dragonfly research offered an opportunity to practice some of those research skills, and in the process, build friendships and fortitude in the face of challenging times.

“I think those efforts of understanding the problem more gives me hope and less worry about how things will be,” Ryu said.

The Charisma of Dragonflies
Insects are one of the first animals kids notice, drawn in by their seemingly alien features, said Dick Jordan, a retired science teacher who taught for 40 years at Timberline High School.

Jordan is also the founder of Life Outdoors, a nonprofit whose programs focus on connection with the outdoors and learning about conservation.

In 2021, a former student of Jordan’s, Ethan Tolman, reached out about helping Jordan survey dragonfly species in the Boise River watershed. Tolman, now a Ph.D. student at the City University of New York, wanted to look at the abundance of different dragonfly species along the Boise River.
Kristin Gnojewski, Boise Parks and Recreation’s community volunteer specialist, had trained community volunteers on dragonfly identification for a community monitoring program, and a volunteer read about the Finding Dragons program in the newspaper, asking if their group could participate. Soon, both students and community science volunteers were banding together to participate in the Finding Dragons program.

Tolman, Jordan, and Gnojewski said dragonflies make a great study subject for understanding the urban environment because they are easily recognizable and charismatic. They are not difficult to find in the Treasure Valley’s green spaces, Gnojewski said. Their aerial agility and iridescent colors make them fascinating to watch, Tolman said, noting that they appear in pop culture, like the flying machines, or ornithopters, in the Dune movies.

Dragonflies are also some of the most efficient predators, Tolman said. Known for intercepting prey rather than just chasing it, studies indicate they have a 90% success rate for snagging their target, he said.
The aquatic nymphs are eaten by fish species and other animals, while also doing their own hunting, Jordan said.

“They really are wonderful bioindicators of the health of a river,” Jordan said.

Dick Jordan, left, holds a blue dasher dragonfly as student volunteers look on. Student and adult volunteers collected blue dashers near the Parkcenter Pond in Boise in August for genome sequencing. Photo courtesy of Jisong Ryu

Time Traveling with Biological Clocks
When the DNA of a species is sequenced, it can be read as a sort of code to understand the evolutionary changes the species has undergone over time.

When Tolman approached Jordan about studying DNA sequences of dragonfly species, he likened it to a kind of time travel — a way to peer into the species’ history, Jordan said.
“When he mentioned time travel, it was just like the light came on,” Jordan said. “What an exciting way to get these kids to go back in time and think about how these species — which have been around a lot longer than us — dealt with climate change.”

In 2023, they investigated two lines of inquiry: analyzing the genomes of dragonflies that had already been sequenced, and sequencing the genome of a local species, the blue dasher (Pachydiplax longipennis).

To accomplish the latter, students and volunteers from Gnojewski’s program went to the Parkcenter Pond to catch blue dashers. The day lives on as a highlight of the program so far, with the students and city volunteers coming together to do fieldwork.

For Ella Driever, now a senior at Timberline High School, it was her first time doing field work, an exciting step for the aspiring wildlife biologist. The experience ‘sealed the deal’ on her interest in wildlife biology, she said. That day, she was also the first person to catch a blue dasher, a feat given their nimble flying capabilities.

“That was the first time I actually got to have a real creature that I was studying in my hands,” Driever said. “That was just magical.”
The specimens collected from near the pond were sent to Brigham Young University for sequencing, Jordan said.

Bringing it All Together
In August 2023, the Finding Dragons group hosted a two-day, intensive biodiversity workshop that invited everyone who participated in the project to hear presentations from Tolman and Jordan, as well as scientists from around the country about conservation research efforts.

Though the initial intent was to analyze and write the scientific manuscript about the blue dasher’s genome during the second day of the workshop, the sequencing was not yet completed. Instead, the group pivoted to analyzing the genomes of three species whose genome sequences were already available to the scientific community, seeing how they had responded to past climate change as a practice round for doing the same for the blue dasher, Tolman explained.

The group looked at the genomes of two damselflies, one from Europe and one from the western U.S., and a dragonfly from Europe. The students had the chance to do some of the computational analysis, Tolman said.

Ella Driever holds up a blue dasher dragonfly that she caught near the Parkcenter Pond as Augie Gabrielli looks on. Student and adult volunteers with the Finding Dragons project collected blue dashers near the Parkcenter Pond in Boise in August for genome sequencing. Photo courtesy of Ella Driever

The analysis revealed that none of those species appear susceptible to climate change. That is still a valuable finding as it helps scientists prioritize policy for species that are the most vulnerable, said Or Bruchim, a senior at Timberline High School that helped with the computational analysis.

“We have limited resources to alleviate the impacts of climate change,” Bruchim said. “The species that we need to protect, we should definitely allocate more resources according to how much they’re impacted. So we shouldn’t waste our resources on a species that’s not going to be too impacted by the effects of climate change.”

By the end of the day, through dividing up the different sections of manuscript, the group had a draft of about 80% of the research paper. The results were published in the International of Odonatology, with the students and city volunteers listed as co-authors.

When the blue dasher genome information came back, the students were tasked with assembling that as well, Tolman said. With the help of some additional analysis from Tolman and other scientists, they were able to write a manuscript looking at broader changes in the dragonfly order Odonata.

The manuscript is currently being reviewed by the journal Gigascience, with the students listed as authors.

Future Blue Dasher Inquiries, Future Connections
Tolman and Jordan anticipate that the information contained in the blue dasher genome can be used for an additional five or more years of scientific inquiries for students, and anyone who makes use of the publicly available data.

For example, how closely related is the Boise blue dasher to blue dashers that live elsewhere, and do they have traits that make them able to survive in cities?

Jordan says he also hopes to apply the research model to study mayflies in the McCall area, connecting with the fishing community there, he said.

The leaders and participants also highlighted the wide-ranging mental health benefits that come with scientific research efforts.

Driever said that she keeps a busy schedule with activities like playing varsity volleyball and working a part-time job.

“When I get to go do these fieldwork things, and I meet these people, I allow that nature that I’m protecting to ground me and keep myself from being burnt out,” she said.
Bruchim said his involvement shows him that others care about the same issues and are taking action toward solutions.

“It’s a really enlightening experience, and you’re able to make connections with people that share the same values and are passionate about the same things you are,” he said, “so it’s a big mental weight off, and it makes you feel more in control of the situation.”

Erin Banks Rusby covers Caldwell and Canyon County. She reports on local government, agriculture, the environment, and more. She can be reached at erusby@idahopress.com

Leaning into Content with Lesson Sequencing

Leaning into Content with Lesson Sequencing

by Zachary Zimmerman
Bainbridge Island, WA

s an outdoor educator, I often get sucked into the false binary that lessons are either fun or informative, that content must be sweetened with games, stories, and activities like applesauce for children’s medicine. But stories are one of the oldest forms of teaching known to humankind, and games and interactive activities help students interpret and internalize what they learn on trails, in classrooms, and at home. In this article, I invite you to stop apologizing for your content teaching and start weaving it into lesson sequences that include stories, games, writing activities, and more. Sequences can make your teaching practices more effective, more equitable, and yes, more fun. 

Recently, I learned that teachers visiting Islandwood with their students were passing on the same feedback week after week: many of the lessons our instructors were teaching on ecosystems fell short because students didn’t fully understand what the word “ecosystem” meant. They might be able to give examples (“rainforest”) or describe them somewhat (“habitat”), but they were missing the definition and significance: communities of different living things that interact with each other and their physical habitats. An ecosystem isn’t just a place; it’s a dynamic arrangement of matter and energy; sunlight, water, and nutrients; life, death, and life again. Of course it needs some scaffolding

Because ecosystems are one of my favorite things to teach 5th graders, I took note immediately. Learning about ecosystems helps students understand the world in which they live, sets the stage for deeper sense-making outdoors, and aligns neatly with NGSS standards and cross-cutting concepts. Ecosystems are also teachers themselves, offering lessons on diversity, interdependence, resilience, and identity. When students see forests and intertidal zones as neighborhoods full of unique and diverse beings supporting each other through their mere existence, they may have an easier time valuing their own identities and thinking more about how they fit into their communities. To restate ecologically, they may discover their own niche.

As heady and enticing as these ideas are to me, I know that teaching for equity means letting go of preconceived notions of how students will use my lessons, and creating space and support for them to connect ideas presented in class to their own lives. It also means ensuring that all students are working from the same baseline of knowledge as they explore those more abstract spaces. In the past, I had equated “baseline” with “lecturing” and “lecturing” with “boring”, leading me to approach core content apologetically and half-heartedly.

To address my reluctance and reimagine content teaching as a part of, not apart from, the immersive fun and exploration that drew me to outdoor education, I started experimenting with lesson sequencing: using stories, activities, and games to bookend and contextualize core concepts. What started as an apologetic approach to content has proven an effective and equitable strategy for outdoor teaching that makes complex ideas like ecosystems meaningful, memorable, and fun. Below I outline a favorite lesson sequence on ecosystems that envelopes content with storytelling and modeling activities. But first, a few tips for developing your own sequences.

Work Backwards

Mapping the core concepts you need to scaffold into a larger lesson can reveal where your content time will best be spent. In the ecosystem example below, I use worksheets to get all my students on the same page about producers, consumers, and decomposers: what they are, what they need, and how they relate to each other. Knowing which concepts I need to teach about can also help me select starting lessons that introduce relevant terms or relationships.

Know Your Audience

Are your students quiet or chatty? Do they like individual reflections, pair-shares, or large group discussions? Maybe a combination? Do they ask a lot of questions, or wait for you to give answers? Do any of your students have IEPs or 504 plans? What other accommodations might one or many students need to feel safe, comfortable, and ready to learn and participate? Consider these questions when thinking about your group and reflect on how they might impact your plan. Maybe you need to switch out that starting story for a running game; maybe that running game works equally well walking or sitting.

Find Your Flow

Once you know what information, structure, and supports your students need to reach their learning targets, think about an order of operations that makes sense for the spaces you’ll be teaching, your style, and the energy you expect. Thinking about biorhythms can be a helpful clue here – if you’re starting this module right after lunch, will students be more or less active than if you began your morning with it? There’s no perfect formula here, but Ben Greenwood’s Lesson Arc (Introduction, Exploration, Consolidation) provides helpful inspiration. Personally, I like to start with something engaging that models the ideas we’ll use and end with a game or reflective activity – again, this is where art meets science, so get creative.

Now that you have some ideas for sequencing lessons, let’s look at an example.

Lesson Sequence: Ecosystems and Interdependence

Materials:

  • Storybook
  • Ecosystem worksheets (Islandwood journal is used in this example)
  • Ecosystem cards (make your own or find publicly available regional sets like this one from Sierra Club British Columbia)
  • Ball of string or twine
  • Writing untensils

Lesson 1: Read The Salamander Room by Anne Mazer (read-along here

This is the story of a young boy who brings home a salamander to live in his room. As his mother continues to inquire about how the boy will care for the salamander (and eventually, to care for everything else he has added to his room in the process), students begin to see not only how different living things rely on each other, but the impacts of removing a more-than-human friend from its chosen home.

Additional discussion questions:

  • How did the room change throughout the story?
  • What else would you have changed?
  • What relationships did you notice?

(Of course, any storybook of your choosing that describes habitats, food webs, nutrient/energy cycles, and interconnectivity will work – I just like this one!).

Lesson 2: Ecosystem Components and Definitions

Transitioning into the content component, begin by asking students if they have ever heard of the word “ecosystem” and what it means. While assessing answers, ask whether they saw an ecosystem in the story they heard. These discussions can help decenter the instructor as the holder of knowledge and assess potential leaders in your group.

Next, pass out worksheets/journals and give students 5-10 minutes to complete the assigned pages, encouraging them to quietly work alone or in small groups. Set clear expectations that they should do their best to fill out whatever they know, and that we’ll fill them out together as a group afterward.

 

 

 

 

 

 

 

 

 

 

 

Drawings from a student’s Islandwood journal. Mushrooms are depicted as decomposers, trees as producers, and squirrels as consumers. On the next page, sentence and word starters help students decode core definitions.

 

 

When students indicate that they are done, invite them back to a large group. Ask if anyone can give definitions of producers, consumers, and decomposers, or share examples that they drew or wrote in their journals. This helps individual students confirm or correct their answers without judgment and add test their knowledge by adding their own examples to the discussion. Talking through producer growth, animal consumption, and decomposition a few times helps reinforce how different inputs and outputs relate to the process and emphasizes its cyclical nature.

When students have completed their worksheets and all questions have been answered, move on to Lesson 3.

Lesson 3: Web of Life (adapted from Sierra Club British Columbia)

Because a full lesson plan is linked above, I focus here on ways that I consolidate knowledge from the above lessons, assess content learning, and prepare students to apply these new ideas to future exploration.

Pass out Web of Life cards to your students and save one for yourself. If you plan to introduce a new element later (e.g. birds migrating from habitat loss or new trees planted by conservationists), hold onto those cards.

As you pass out cards, ask students to take a moment and acquaint themselves with their element. Some questions you might ask:

  • Are they a producer, decomposer, consumer, or something abiotic?
  • What do they know about this element?
  • What does this element need to thrive?
  • What threatens it?

When students are ready, begin the lesson as described in the linked plan. Empower students to help correct or add to others’ ideas. For example, if a student assigned “worm” passes to “soil” and says, “I relat to soil because I eat it,” invite the group to discuss what they know about how worms relate to soil or how they get their energy (i.e. decomposition, which makes soil).

Once the web is fully developed, you can take this lesson in many directions, inviting students to consider what happens when one part of the web is removed or changed. When they can see that everything is connected, even indirectly, you’re ready to explore ecosystems!

Zachary Zimmerman (he/him) is an outdoor educator, teacher training facilitator, and insatiable problem-solver residing on the traditional Suquamish/Coast Salish land currently known as Bainbridge Island

Sources Cited

5-LS2-1 Ecosystems: Interactions, Energy, and Dynamics | Next Generation Science Standards. (n.d.). Retrieved May 25, 2023, from https://www.nextgenscience.org/pe/5-ls2-1-ecosystems-interactions-energy-and-dynamics

Greenwood, B. (n.d.). What is Lesson Sequencing and How Can it Save You Time? Retrieved May 25, 2023, from https://blog.teamsatchel.com/what-is-lesson-sequencing-and-how-can-it-save-you-time

Mazer, Anne., & Johnson, S. (1994). The Salamander Room (1st Dragonfly Books ed.). Knopf

Sierra Club BC. (n.d.). Web of Life. Sierra Club BC. Retrieved May 25, 2023, from https://sierraclub.bc.ca/wp-content/uploads/Web-of-Life-Game.pdf

Bird by Bird We Come to Know the Earth

Bird by Bird We Come to Know the Earth

by Emma Belanger

As someone who comes from a low-income background and grew up in a semi-urban environment, birds were one of the first aspects of the more-than-human world that I felt truly connected to without having to obtain expensive gear, resources, or and a way to travel to a novel environment. When I looked out my window, I saw birds in the trees outside; when I walked around my neighborhood with my family, I practiced my birding by ear; at home, I would sit for hours combing through my Birds of Michigan field guide and making notes about the birds I had noticed that day. For me, birds were an access point to what would become a lifelong dedication to learning more and being inspired by the natural world.

Photo by Emma Belanger

Now, as an outdoor educator working primarily with 4th-6th grade students, I’ve been thinking a lot about how to teach about birds. If we want to study ecology, knowing more about the birds in a particular ecosystem can tell us so much about how different actors are playing a role and acting in relation to other beings. If we’re curious about how the world changes over time, we might look to birds to help tell us some of the story. When we want to know more about the beings we share space and time with, we might turn to feathered friends, hear their calls, see their colors, and learn about ways the world brings life together. With birds having relatively easy visibility and accessibility in most locations, even in urban settings, shared stories of conservation successes, and many aspects worthy of awe, birds are a perfect candidate for rich studies in environmental and science education spaces that can connect us to the more-than-human world. Thus, in educational settings, learning about birds allows learners to think about the world around them in finer detail and gives them tools to begin asking questions about stewardship, conservation, and being in right relationship with their local ecosystem.

There is also evidence to suggest that being around and noticing birds can lead to positive mental and emotional wellbeing (Hammoud et al., 2022). Further, practicing birding can invite us to engage with other ways of knowing and being that allow us to reimagine what ecology means, making room to dismantle some colonialism present in academic ecoliteracy. When teaching about birds, we can engage in critical place pedagogy and put intentions towards expanding learners’ socio-ecoliteracy, where Indigenous, Black, and peoples of color history and culture can be valued as legitimate funds of knowledge (Wicks, 2020). There is not one right way of having a relationship with birds, and connections to birds can be profoundly related to culture, family, and personal experiences. Honoring an individual’s unique relationship to place and non-human animals provides learners with relational resources to dene their experiences in their own terms, leading to learning that becomes more personal and grounded in that individual’s reality.

Any outdoor place has birds for us to meet, listen to, and learn from, making bird lessons inherently a place-based topic. When lessons give learners access to ways of knowing that enable them to make more connections to their communities, act for important causes, and find ways to care for themselves and the world around them, knowledge can become a foundation where future worlds of justice take root. Climate change continues to impact human and non-human lives and ways of being, and having access to practices that feel grounding, important, and rooted in place-based knowledge may empower learners to act radically in reciprocity and appreciation for their communities and one another. In this way, engaging in practices of birding and paying close attention to the world can equip students with mindfulness skills, deepened nature-culture relations, and inspiration for future dreaming and activism.

If you feel inspired to try out a bird lesson with your community of learners, you can find a lesson I like to do with “new” birders below. I, for one, hope to make the practice of listening and watching for birds something I do with learners no matter where I am. This practice feels intertwined with relational gratitudes and can help us to reiterate a commitment to paying attention to the natural world. As Mary Oliver says, “attention is the beginning of devotion” (Oliver, 2016). In the time that I’ve spent with others thinking about birds, I’ve seen others experience, and I have myself experienced, feelings of joy, wonder, peacefulness, and excitement. All of these emotions, to me, are essential to humanity’s survival and ability to thrive in our changing world. To change with our world, we must be willing to listen, to take the time to see and feel what our bodies feel, to be present in what the present is calling for.

Birdsong Lesson Plan

Learning Goals: Feel familiar and comfortable being quiet outside, practicing grounding techniques through deep listening, making creative connections to the world around us.

DCI Focus: Biological Evolution; Ecosystems

NGSS Practices: Obtaining, Evaluating, and Communicating Information; Developing and Using Models

Materials: Paper, writing utensils, any accessibility equipment necessary for your group of learners, bird eld guides (optional), binoculars (optional), Merlin Bird ID App or BirdNET app and device (optional)

Target Audience: 3rd grade and up
Ask a group about birds they may have seen in their lives, recently in a shared context or by connecting students to other ways some may commonly learn about or experience birds.

Use a mix of small group, individual, and large group reflections. Then, prompt the group to think for a moment about birdsong and what they already know about how birds communicate. Introduce the activity by asking learners what it might look like to try to draw a visual representation of a sound. If guidance is needed, provide ideas about pitch, tone, sound length, loudness, etc, and different ways those could be represented.

Pass out/ask learners to get out a blank piece of paper and a writing utensil while you explain that the group will sit silently for some length of time (5-10 mins depending on group interest and motivation), and while we listen for birds, we’ll draw out visual representations of the bird noises we here.

Emphasize that there’s no way to do this wrong and lots of ways to do it right. Students can use whatever symbols, patterns, or even words and colors, as long as it makes sense to them.

Do the activity with the students during the allotted time; draw what you hear! There is an opportunity to use the Sound ID feature of the Merlin Bird ID app, or the BirdNET spectrograms, if that would feel relevant to your learners or if you have learners that are in the Deaf community. Bird eld guides could also be used during this part of the lesson.

At the end of the time, ask students reflective questions. Perhaps, how many different birds did you hear? How did you know? Then, ask students to switch with a partner to try to decode their representations. Ask students to make the sounds they think their partner drew.

At the end, I like to ask students how it felt to be sitting quietly together in nature and if it was easier to hear sounds that they don’t usually notice. At this point, I share that birdsong is one way I feel like I can always tune in to my relationship with the natural world when I need it personally–if I’m sad, overwhelmed, anxious, etc. I encourage learners to think about what it might look like to try this activity in other spaces and contexts.

References

Conradie, N. & Van Zyl, C. (2021). Investigating the Environmental and Avi-Values and Birding Behaviour of Gauteng’s Young. African Journal of Hospitality, Tourism and Leisure 10(5):1695- 1710. DOI: https://doi.org/10.46222/ajhtl.19770720-187
Hammoud, R., Tognin, S., Burgess, L., Bergou, N., Smythe, M., Gibbons, J., Davidson, N., A, A.,

Bakolis, I., & Mechelli, A. (2022). Smartphone-based ecological momentary assessment reveals mental health benefits of birdlife. Scientific Reports, 12(1), 17589. https://doi.org/10.1038/s41598-022-20207-6

Neruda, P., & Schmitt, J. (1989). Art of birds (1st ed). University of Texas Press.

Oliver, M. (2016). Upstream: selected essays. New York, Penguin Press.

White, R. L., Eberstein, K., & Scott, D. M. (2018). Birds in the playground: Evaluating the effectiveness of an urban environmental education project in enhancing school children’s awareness, knowledge and attitudes towards local wildlife. PLOS ONE, 13(3), e0193993. https://doi.org/10.1371/journal.pone.0193993

Wicks, T. (2020). Becoming Birds: Decolonizing Ecoliteracy. Portland Audubon. https://audubonportland.org/blog/becoming-birds-decolonizing-ecoliteracy/

Zych, A. (2016). Birding as a Gateway to Environmental Education. New York Audubon.
https://www.sciencefriday.com/educational-resources/birding-gateway-environmental-educati on/

Author
Emma Belanger (she/they) is a graduate student in education, interested in co-creating new worlds with learners. You can visit her website by clicking here.

ADHD in the Outdoors

ADHD in the Outdoors

Five 5th-grade students sit or stand facing a sunny pond surrounded by lush greenery, working on a writing task or exploring quietly. Photographed by Greyson Lee

Background Music and Birdsong: ADHD in the Outdoors

by Greyson Lee

After several hours of watching my dad bounce around his home auto shop, channeling restless energy into relentless productivity, he finally pauses to look up car parts long enough for me to catch a conversation with him.

I know by this point that my brother, diagnosed with ADHD before either of us can remember, was not the only one in the family with it. My dad hadn’t said the words before then, but when I bring up my own recent diagnosis, he seems to connect the dots to his own vague learning disability diagnosis from before the language was as common as it is today.

He reflects on a story I’d heard before: he’d been failing a math class in high school, so he and his mom fought for, and won, permission to snake earbuds through his hoodie. He could listen to music in one ear while the teacher lectured, and with this background stimulation humming below the teacher’s lectures, he suddenly felt like he could focus on and understand the content of the class.

Even today, my dad always has music on when he’s doing anything: I hear it in the morning when he’s getting ready for work, it’s always on in his car, it’s on when he gets home from work until he goes to bed, and he keeps it playing over the speakers at his station during his entire work day as well. For him, the background noise seems to be an essential tool in allowing him to function day-to-day with ADHD.

The one place my dad doesn’t seem to need his music, however, is outdoors.

It seems that any time students with ADHD come up in outdoor education, there’s a common refrain: “they do much better here”, and even, “you wouldn’t know they had ADHD if nobody told you”. Struggles in the classroom melt away in the outdoors. Some even note that their students with ADHD tend to thrive in an outdoor learning environment, often finding it even easier to engage than their peers do.

What is it about the outdoors that allows people with ADHD to focus so much better? And how can educators- formal and informal- lean into this phenomena?

Tired of Paying Attention

Environmental Psychologist Stephen Kaplan has proposed the theory of “directed attention”: the kind of attention we have to pay in certain situations, like listening to a lecture, in order to consciously control our focus. Directed attention is a choice and a skill, and it might look like tuning out distracting noises, or ignoring the impulse to check social media. The implication is that this conscious effort will eventually cause “attention fatigue”, making it more and more difficult to continue controlling one’s focus. (Clay, 2001)

In a 2004 study, survey results indicated that time spent outdoors led to reduced ADHD symptoms (Kuo & Taylor, 2004). Their results suggest that green spaces are rich in fascination, the other side of Kaplan’s “attention fatigue” coin: a more natural and undirected form of attention that allows the mind to rest.

“Just-Right” Stimulation

In an article for ADDitude Magazine, Dr. Ellen Littman dives into the complex battle between too much and too little stimulation that is often taking place in ADHD brains. Littman explains that in order for brains to be “alert, receptive, and ready to attend and learn”, they need to be stimulated just the right amount; a balance that most brains tend to be able to figure out on their own. (Littman, 2022)

ADHD brains, on the other hand, lack the “reliable coordination of neurotransmitters” that would otherwise allow them to control their own focus. Too little stimulation leads to a kind of boredom often described as “painful” by people with ADHD, and an intense motivation to find some kind of stimulation- often a spike in dopamine- to compensate. Too much stimulation, on the other hand, results in “over-arousal”: feeling overwhelmed, often suddenly, and reacting with irritability, restlessness, or even aggression until able to get away from the commotion and recuperate. (Littman, 2022)

ADHD brains are left either overreacting or under-reacting to stimuli, rarely anywhere in a more “moderate” area that might allow for some control over one’s ability to focus, be receptive, or to engage in learning.

Five 5th-grade students perched on small rocks lean over to watch their classmate pick a shore crab out of the water. Photographed by Greyson Lee

 

“Chill Lo-Fi Beats”: Regulating Input

A few years ago, a series of YouTube playlists and livestreams by the “Lofi Girl” channel garnered widespread popularity; I remember a few professors using them to fill the silence in the classroom while we worked on some assignment or project.

The appeal is similar to that of white noise machines, water features, and the fan you might leave on in your bedroom at night, even if it’s not too hot: silence can be just as distracting as too much noise. In a casual survey conducted by ADDitude Magazine, one respondent shared that background music helps them maintain focus on a particular thing; “when my environment is quiet,” they said, “my mind wanders to various things and not on what I need to be doing.” (ADDitude Editors, 2022)

Background noise can also be a way of drowning out too much stimulation; another respondent shared that soft, familiar background music “helps [them] focus by removing any background noise (dishwasher, washing machine, people outside or around [them]).”  (ADDitude Editors, 2022) Other respondents reported that their need for background noise could vary depending on their task and situation; activities that require high focus might be better paired with silence or very soft music, and “tedious” activities that require less mental focus might be easier with something that distracts the brain.

Of course, everyone’s “ideal” balance of stimulation looks different- but background noise can be a helpful tool in finding it.

A student cradles a rough skinned newt in their hand, and several others reach toward the newt in shared fascination. Photographed by Greyson Lee

Zoning In

It isn’t revolutionary to note the lack of stimulation present in classrooms; in fact, this is openly a design goal. The idea is to lower distractions so students can focus on the only source of stimulation in the room: their teacher.

As a student with ADHD, I had few ways to regulate my balance of stimulation in the classroom. If I needed more stimulation, I could fidget or draw; if I needed less, I could try to go to the bathroom for a break. Oftentimes I just found myself staring glassy-eyed at a wall, my thoughts racing in directions I had no control over, while my teacher droned on pointlessly in the background.

Students are not “cured” of their ADHD when they walk outside, and I still find that certain students need longer transition times, more breaks, more responsive planning, or something to fidget with in order to engage as much as other students can.

But I rarely see those glassy-eyed stares when teaching outdoors, and why would I? There’s so much to look at outdoors, and hardly any walls to zone out onto. Students often fidget, wander, and move their bodies in ways I wouldn’t see in a classroom, but when I finish giving instructions and turn them loose, it’s clear they heard everything they needed to. And I hardly ever see a student need a break from our setting– there are no long bathroom breaks, walking laps elsewhere, or sitting in a hallway to soak in a bit of silence.

There are so many more opportunities for self-regulation outdoors, and the impact on students with ADHD is noticeable. How would their learning experiences be different, and their “academic success” impacted, if their teachers leaned into that?

 

 

 

References

  • ADDitude Editors. (2022, May 20). Background Noise vs. Silence: ADHD Adults on Music & Focus. ADDitude. Retrieved May 6, 2023, from https://www.additudemag.com/background-noise-sensitivity-adhd-music/
  • Clay, R. A. (2001, April). Green is good for you. American Psychological Association, 32(4), 40. https://www.apa.org/monitor/apr01/greengood
  • Kuo, F. E., & Taylor, A. F. (2004, September). A Potential Natural Treatment for Attention-Deficit/Hyperactivity Disorder: Evidence From a National Study. Am J Public Health, 94(9), 1580-1586. https://doi.org/10.2105%2Fajph.94.9.1580
  • Littman, E. (2022, May 18). Brain Stimulation and ADHD / ADD: Cravings and Regulation. ADDitude. Retrieved May 6, 2023, from https://www.additudemag.com/brain-stimulation-and-adhd-cravings-dependency-and-regulation/

 

Credit

Greyson Lee is an art and outdoor educator finishing his M.Ed at the University of Washington.

Mind the Gap: How Environmental Education Can Step Forward to Address the STEM Achievement Gap

Mind the Gap: How Environmental Education Can Step Forward to Address the STEM Achievement Gap

Environmental Education is a broad field encompassing nature centers, school forests, outdoor education facilities, state and national parks among others. This diversity of organization type allows for wide engagement by the public and holds great potential for addressing achievement gaps in the formal education system.

by Robert Justin Hougham, Ph.D,
Isabelle Herde,
Tempestt Morgan,
Joey Zocher, Ph.D.,
and Sarah Olsen, Ph.D

Environmental Education organizations have more power than they realize to affect change. For example, in Wisconsin, Environmental Education organizations employ over 3,100 educators, serve 1.1 million user days of education in the field, and represent over $40 million in direct economic activity. The collective impact of this industry is significant. We advocate for other states and regions to take a similar approach to quantifying the field in order to leverage support and ultimately, affect change. Part of addressing the STEM achievement gap will lay in making the environment an integral part of the approach, while yet another part of addressing this gap will be advanced by focusing the collective impact organizations to build capacity. The work we will go on to describe here has proven valuable and eye opening- we also will lay out some of the steps to replicate this in other states. Doing so is a matter of environmental justice, a call to which many environmental organizations are responding.

Environmental Education to address STEM achievement gaps
Science, Technology, Engineering and Math (STEM) education does not have equal outcomes among different demographic groups. Racial disparity in science education is an issue nationwide. The 2015 NAEP science assessment noted statistically significant gaps in achievement for U.S. students that identified as black and Hispanic compared to those who identified as white (National Center for Education Statistics, 2015). As an example, Milwaukee, Wisconsin has the greatest STEM achievement gap in the country (Richards, 2016). Nationwide, schools that serve predominantly black and Hispanic students are less likely to offer higher-level science courses (U.S. Department of Education, Office for Civil Rights, 2016). All of these facts demonstrate an educational system that fails students of color in STEM.

The pedagogical practices of environmental education have proven to be an accessible approach to science learning for youth of different backgrounds and is thus uniquely poised to address the STEM achievement gap. The field of environmental education encourages students to observe and connect with a place in order to learn. Dominant strategies for teaching include place-based education and an inquiry approach. Place-based education allows students to forge meaningful connections between STEM content, students’ daily experiences and to observe the environment around them (Land & Zimmerman, 2015; Greenwood & Hougham, 2015). These field and inquiry-based approaches in STEM have better educational outcomes for low achieving youth (Blythe et al., 2015). Field experiences have also shown to increase confidence for underserved student populations (Hougham et al., 2018).

However, the field faces its own gaps of knowledge and historical bias. For the environmental education industry to effectively address the nation’s STEM achievement gap, environmental education organizations must understand their position and progress in addressing issues related to diversity, equity and inclusion (DEI). This includes, but is not limited to, the increase of positive representation of minorities and other underrepresented groups, as well as teaching in a more culturally conscious and responsive manner. This paper will focus on Wisconsin, which faces some of the largest STEM education gaps, and how the lessons learned from a status and needs assessment and the work currently underway to address those findings could be applied to the nation.

Methodology
In the winter of 2015-16, a digital survey was distributed to environmental education organization leaders around the state of Wisconsin. Our goal was to investigate the statewide status surrounding relevant topics within environmental education such as land management, professional development, visitation trends, budgets, diversity, equity and inclusion and identify organizational needs in these focus areas. In 2019, we updated and re-ran the survey, intending to update and improve our understanding of the status and needs of environmental education in Wisconsin. This article is focused on the enhanced component of the survey questions about diversity, equity and inclusion. Here, we present the set of questions from our 2019 DEI section of the survey to lay out our approach, and also to encourage the use of similar question sets in other states and regions.

The following questions were developed to address diversity, equity and inclusion in our field, defined in consultation with August Ball, Founder/CEO of Cream City Conservation & Consulting LLC. We understand the definition of diversity, equity, and inclusion and its meaning can take different forms. For the purpose of this survey we asked that respondents consider the following definition in their answers:

Diversity: Differences that make a difference.
Equity: A process of ensuring everyone has access to what they need to thrive.
Inclusion: Celebrating, welcoming and valuing differences.

  1. Please estimate the percentage of groups that visit your site or programs that include at least one person with a known disability.
  2. Please check all areas of training provided to your environmental education instructional/ program staff on working with persons with disabilities. How to adapt activities for participants with:
  3. Do you consider your facility to be accessible to visitors with disabilities?
  4. Do you consider your programs to be accessible to visitors with disabilities?
  5. Have you conducted a physical accessibility survey of your site?
  6. Does your curriculum or lesson plans include activity ideas for learners of varying abilities?
  7. Do your curriculum or lesson plans include activity ideas for learners from different cultures or backgrounds?
  8. What level of priority does your organization place on increasing program and facility accessibility at your site?
  9. What level of priority does your organization place on increasing diversity, equity and inclusion at your site?
  10. What is the estimated demographic distribution of your staff?
  11. Select the answer that best fits your organization.
    11a. This organization is committed to diversity.
  12. Please read the sentences and select the answer that best fits your organization. These questions were taken from the Diversity Survey (2014) by the Society for Human Resource Management.
    12a. There is cultural and racial diversity among the people a job candidate will meet/see on their first visit to the organization.
    12b. There is cultural and racial diversity among the people represented in our organization’s marketing materials
    12c. Employees from different backgrounds are encouraged to apply for higher positions.
  13. Do you have resources and content available in other languages?
  14. Does your organization provide trainings on diversity, equity, and inclusion?

Past iterations of this survey have had positive impacts for Wisconsin environmental education organizations. Solid data is needed to inform decision – making and programming. The closer the data reflect the local context of the industry, the more effectively educators, administrators and our supporters can respond to current trends. However, collecting this data is only one step towards changing the status of the work on the ground.

 

 

Results
193 EE leaders representing 173 EE organizations completed the survey. We asked these leaders to describe their organization in a number of ways. For example, whether the organization correlates school program to academic standards (75.3% – Yes), if they considered their location an outdoor tourist destination (44.0% – Yes) and if they regularly partner with other regional or statewide EE organizations (59.5% – Yes).
Of the 93.1% of respondents who considered their organization’s facilities to be accessible or somewhat accessible to visitors with disabilities, half (50.5%) have never conducted an accessibility survey of their site. The most common accessibility-related training that staff receive focus on physical disabilities (65.1%) and ways to encourage communication and interaction among all participants (50%).

 

Survey participants were asked which subject areas and organizational skills their staff would most benefit from additional training. Shown below are the most common responses:
Top EE Subjects Areas staff need
1. Using STEM as a context for EE (E-STEM)
2. Technology use in outdoor education
3. Understanding school initiatives, speaking school language
4. Community action/service learning
5. ‘Sustainable design/green technologies or buildings’ and ‘Community-based learning’

Top Organizational Skills staff need
1. Diversity, equity and inclusion
2. Grant writing
3. Fundraising
4. Digital presence/website/Facebook/etc.
5. Volunteer management
Analysis: Perception vs Reality: the bubble around inclusion and environmental education

Solutions
The reported commitment by environmental organizations to DEI does not match the reported actions or steps they have taken towards DEI. For example, respondents from 56% of environmental organizations in the United States reported that trainings focused on diversity should be done (Taylor, 2014). In the Wisconsin status and needs assessment, only 50% of respondents reported actually conducting trainings related to diversity, equity and inclusion (Hougham et al., 2019). Even then, “The small body of empirical research that does exist about diversity trainings suggests that current practices are largely ineffective over the long-term. Therefore, it is imperative to conduct needs assessments to determine what content should be done” (Beasley, 2017, p. 5). Spending time planning, executing and evaluating DEI trainings will be essential in moving this body of research forward and improving the professional development opportunities available to educators in the field.

At Upham Woods Outdoor Learning Center in Wisconsin, seasonal staff training includes a session on DEI. The session lasts approximately 5 hours and is spread out over 2 days. All levels of leadership were present – from the executive director to seasonal teaching naturalists – for a total of thirteen participants. Different levels of participation were encouraged; staff were given the opportunity to reflect individually and to participate in both small and large group discussions. The training used multiple forms of media including pictures, text, and videos in order to cite experts and incite discussion. Environmental justice framed the training so that our team could understand the larger picture and the role that environmental education could have on its participants. Environmental educators should empower learners to exercise their agency in creating better communities, which includes the environment in which those communities exist. More environmental organizations are embracing the focus on environmental justice in efforts to engage more diverse communities. For example, Camp ELSO (Experience Life Science Outdoors) in Portland, Oregon focuses programs on “grounding the youth experience in environmental justice while elevating the visibility and leadership opportunities for folks of color. ” (Brown, 2019, p. 8). We looked at case studies that explore how environmental justice and environmental education intersect.

The training covered multiple topics such as the elements that make a space diverse, equity versus equality and how to respond to microaggressions as a bystander and as someone who experiences them directly. We talked about agency and how promoting others to exercise their agency creates more inclusive spaces. The training went beyond providing definitions and introductions to vocabulary words. Our staff discussed privilege and the role it has in addressing equity. We spent time talking about how access only approaches to broadening participation fails to hold dominant cultures accountable for the culturally exclusionary language that may exist within the programs they are providing access to (Bevan et ak., 2018). Participants then went through Upham’s lesson plans and identified areas for improvement including how the lesson was framed and a critique of the content. This information was collected and will be used to improve our lessons.

We asked for feedback at the end of the training to help us develop additional modules and activities for staff related to DEI during their contract. While staff training is an integral step towards inclusion, it cannot be the only time an organization supports discussions and activities focused on DEI. The goal of inclusivity needs to be reflected in an organization’s policies, processes, paperwork and infrastructure. Continuous and intentional reflection of staff practices needs to become part of office culture. To create sustainable change we must confront a system that supports the oppression of certain communities and discontinue privileging privilege and focus on supporting those communities that have been historically neglected or oppressed.

For environmental educators, from a pedagogical standpoint, we must not only change what we teach, but be willing to change the ontological underpinnings in the transmission of knowledge. We must shift our role from experts sharing wisdom to members of a learning community with the Earth. This is particularly true for white educators working with marginalized populations, as the dominant culture needs to listen and empower rather than tell and control. Without doing this groundwork in DEI training, we fall into the trap of treating empowerment as giving a voice to the voiceless, rather than listening to those who haven’t been heard. We must shift the notion of DEI as a need to that of an asset, and be willing to use this knowledge to help others create the change we cannot imagine.

Freire (1970) supported the notion that we are moving regardless, and we are either moving to keep the dominant paradigm or to transform it. What better catalyst for change than our urban youth, who are already fueled by being marginalized? Emdin’s (2009) research found, “These students eagerly await opportunities to exercise this power in the creation of a foreseeable new future that is different from an oppressive present” (p. 242). The first question we must ask ourselves is whether our organizations simply want to share what we are doing with diverse audiences or are we eager to embrace this new future as well?

Citations
Beyond Diversity: A Roadmap to Building an Inclusive Organization. Green 2.0.
Bevan, B., Calabrese Barton A., & Garibay, C.. (2018). Broadening Perspectives on Broadening Participation in STEM. Washington, DC: Center for Advancement of Informal Science Education.
Blythe, J. M., Dibenedetto, C. A., & Meyers, B. E. (2015). Inquiry-based instruction: Perceptions of national agriscience teacher ambassadors. Journal of Agricultural Education, 56(2), 110-121. doi:10.5032/jae.2015.02110
Brown. S. (2019). Reclaiming Spaces. Clearing: Resources for community-based environmental literacy education, pp 8-10
Emdin, C. (2010). Affiliation and alienation: hip-hop, rap, and urban science education. Journal of Curriculum Studies, 42(1), 1-25.
Freire, P. (1970/2005). Pedagogy of the oppressed. New York, NY: Continuum
Greenwood, D. A., & Hougham, R. J. (2015). Mitigation and adaptation: Critical perspectives toward digital technologies in place-conscious environmental education. Policy Futures in Education 13(1), 1-20.
Hougham, J., Morgan, T., Olsen, S., & Herde, I. (2019). 2019 Status and Need report of Wisconsin Environmental Education related Organizations. Madison, WI: University of Wisconsin Madison Extension
Hougham, R. J., Nutter, M., & Graham, C. (2018b). Bridging natural and digital domains: Attitudes, confidence, and interest in using technology to learn outdoors. Journal of Experiential Education, 41(2), 154-169. doi:10.1177/1053825917751203
Land, S.M. & Zimmerman, H.T. (2015). Socio-technical Dimensions of an Outdoor Mobile Learning Environment: A three-phase design-based research investigation. Education Technology Research Development, 63(2), 229-255. Doi:10.1007/s11423-015-9369-6.
Richards, E. (2016). Wisconsin No. 1 for black-white science achievement gap. Milwaukee Journal Sentinel. Retrieved from: http://www.jsonline.com/story/news/education/2016/10/27/wisconsin-no-1-black-white- science-achievement-gap/92722730/
Taylor, D. (2014). The State of Diversity in Environmental Organizations. Green 2.o. Retrieved from: https://www.diversegreen.org/wp-content/uploads/2015/10/FullReport_Green2.0_FINAL.pdf
U.S. Department of Education, National Center for Education Statistics. (2015). National Assessment of Educational Progress: Results of the 2015 science assessment. Retrieved from: https://www.nationsreportcard.gov/science_2015
U.S. Department of Education, Office for Civil Rights. (2016). 2013-2014 Civil Rights Data Collection: A First Look. Retrieved from: https://www2.ed.gov/about/offices/listocr/docs/2013-14-first-look.pdf

Acknowledgement
Project funding was supported by the University of Wisconsin – Madison, Wisconsin Association for Environmental Education and the Wisconsin Center for Environmental Education.

About the Authors
Dr. R. Justin Hougham is faculty at the University of Wisconsin- Madison where he supports the delivery of a wide range of science education topics to K-12 students, volunteers, youth development professionals, graduate students, and in-service teachers. Justin’s scholarship is in the areas of youth development, place-based pedagogies, STEM education, AL, and education or sustainability.

Isabelle Herde is the Program Director at Upham Woods Outdoor Learning Center

Tempestt Morgan is the Expanding Access Program Coordinator at Upham Woods Outdoor Learning Center.

Dr. Joey Zochar is an Advisor at Escuela Verde in Milwaukee, WI.

Dr. Sarah Olsen is a curriculum and evaluation specialist for Upham Woods Outdoor Learning Center (no photo)

Bringing Nature Back to the Schoolyard

Bringing Nature Back to the Schoolyard

by Jane Tesner Kleiner, RLA
 
 

Imagine walking out the back door of your school, surrounded by the songs of spring time birds, the soft scents of flowers in bloom, the wind billowing through nearby trees, and (if you are lucky) the croaking of Pacific tree frogs. Sounds great? But… it doesn’t sound like your school? What if?

It may sound daunting, the idea of transforming your school grounds into a green, lush learning environment. However, there are great resources out there, to help put your school on-track to having learning and play environments that include lots of nature. It’s not only the kids who love and benefit from being in natural spaces; so do the school staff and the neighboring community, too.

So many schools have little more than grassy fields, paved surfaces and fenced areas. They may have a few trees and landscape beds, and hopefully an awesome playground, but most are static and sterile environments. There can be benefits to these school grounds: they are relatively safe, and it’s easy to monitor the kids during outside time. They are also seem easy to maintain (although mowing costs are a big pull on a maintenance budget). Yet, they don’t provide opportunity for imagination, let alone the creative activity that sparks imagination.

Over the last 30 years, a growing body of research strongly asserts that children experience myriad benefits from daily access to nature. Richard Louv, of the Children and Nature Network, states in an online article that,

“…including schoolyards with natural play spaces and gardens can help improve physical and mental health, cognitive skills, creativity, and social cohesion. New longitudinal studies also suggest that nature-rich schools can help raise standardized test scores. And children in low-income communities appear to benefit proportionally more from access to green space than those in higher-income communities.”[1]

Research also suggests that providing close-to-home, regular, access to nature will help kids overcome fears of the unknown. Adventuring further, they build self-confidence and interest in the broader world.

In a normal M-F week, children spend 41% of their waking hours at school[2]. With that in mind, school grounds are uniquely positioned to provide access to nature for kids. I certainly see benefits in the students that I work with, not to mention my own kids. I have seen students become self-assured, skilled and proud owners of their schools’ outdoor spaces.

There is also the matter of agency, of capitalizing on kids’ buy-in by involving them in the planning stages. Promoting student voice throughout the planning, design, fundraising, installation and maintenance of school greenspaces gives them hands-on experiences that they may not get elsewhere. And the ownership? People don’t destroy what they built themselves.

To begin, start by listening. Here are some things that I’ve heard, from schools I work with in the Vancouver area:

  • When asked what changes kids would want to see to their school campus, they said two things: more fun play equipment and have the school grounds be their own backyard fieldtrip.
  • When staff were asked where they want their school facility to be in 5 years, they want to be able to teach outdoors; this includes garden spaces and a diverse setting of natural elements.
  • Teachers want to be able to teach using the whole school campus, making use of all features.
  • The process for considering “how” to change the campus, let alone fundraise and maintain the new nature features is daunting.

Where do you start? Luckily, there are professionals who can help every school maximize the opportunity to add more nature to your campus.

It starts with lots of conversations, centered around a few key principles.

In essence, the design will:

  • meet multiple goals, including direct ties to curriculum.
  • allow for exploration, observation, discovery and fun.
  • expand and broaden structured AND self-guided learning and play.
  • foster a child’s sense of wonder and curiosity.
  • build upon what kids love to do: jump & hop; climb & balance; build & take apart; make art; allow for passive quiet time; use all senses. Create! Imagine! Explore!

 

Now that you’re excited to get going and transform your school grounds, here is a short recipe for a successful campus plan:

  • Culture. Form a team to build your natural schoolyard. The team will brainstorm, plan, design, build and maintain the spaces. Don’t rely on one person, or else it won’t be sustainable in years to come. Bring on partners and ask for help! PTO/A’s, local businesses, community groups. Local businesses may be a source of funding, but business people have an inherent stake in the health of their nearby schools. Give them a chance to offer their ideas, skills and, yes, money.
  • Individuality. Each school is unique. Build upon its existing features and add elements that easily complement the site. If you make it too complicated, it will be hard to maintain in years to come.
  • Diversity. Each user group will have different goals for the enhancements, and sometimes they will conflict. By discussing the goals and objectives first, with children’s well-being the focus of the conversation, the best solution can be refined to meet everyone’s needs. Provide something for everyone.
  • Community. Every child, every family has something to gain. Tap into your school community. You have a ready-made pool of hundreds of concerned, hard working adults. Learn who has skills, talents, and materials to contribute to the project. This will help build ownership in the project over time.
  • Inclusiveness. Make sure all the right people have had a chance to weigh in with their ideas and approvals: district staff (facilities, curriculum leads, risk, etc.), teachers, school staff, maintenance, grounds, and most importantly the students.
  • Problem Based Learning. Engage the students in every step, and empower them to meaningfully contribute, create and build a successful set of spaces for the next generation of students. This is learning! Kids will learn important, lasting lessons at every step.
  • Partnership. Find local and national organizations to support your project. Possibilities include:
    • certifying for wildlife habitat
    • becoming a state certified Green School
    • supporting the national pollinator project.
      (Certification goals are great motivators, rallying stakeholders to, “keep on track and get the plaque!”)
  • Consultation. Work with a local professional (e.g. landscape architect, school garden coordinator, etc.) to facilitate the discussions. They can capture all of the ideas and put it into one overall master plan for the site and create a report that can be used for approvals, fundraising and keeping the project on track over the years.

In the end, here is the winning equation:

program needs + site opportunities + available resources + curriculum goals = action plan

 

What goes into the plan?

Consider what type of features to add to your schoolyard.

The physical space.

  • Wildlife habitat. Native trees, shrubs, and flowers to attract butterflies, birds and mammals (provide food/water/shelter/place to raise young).
  • Outdoor classrooms. For classes and small groups to gather to work, listen and learn.
  • Nature play. Use natural materials for kids to actively engage in unstructured and imagination play.
  • Working spaces to actively plan, plant, grow and manage plants such as vegetables, fruits and flowers.
  • Messy areas. Creative spaces to make art, containing moveable elements to build and change.
  • Quiet spaces. Beautiful, peaceful settings with small group seating, to listen, slow down, de-stress and regroup.
  • Exploration spaces. Unique spaces that support a variety of curricula; might include elements for tactile learning, such as water tables, sand play, learning lab stations, and more.
  • Experiment stations. Areas that support the testing of theories, experimentation and active learning. Could include built-in features such as solar equipment, rain harvesting station, or space to create.
  • Green infrastructure. Your school district may want to upgrade features to meet sustainability goals, such as stormwater management, energy efficiency, reducing heat island effects, etc. Meet their needs while creating active learning spaces. Welcome these ideas, as they are often tied to grant money.

 

Photo from the Intertwine

Using it

Creating the space is one thing, using it is another. Look for the tools that will help your school use the campus successfully:

  • When talking to potential partners, emphasize the 4C’s of 21st Century learning:
    • collaboration
    • creativity
    • communication
    • critical thinking

Successfully redesigned schoolyards encourage all of them.

  • Provide training to your staff. Help them find the resources and lessons that tie to their curriculum goals. Most school districts will have a specialist available to help.
  • Identify agencies that offer programs for outdoor learning, and invite them (repeatedly) to your campus. Look for watershed and conservation groups, environmental education centers, local environmental professionals, and sportsmens organizations.
  • Encourage your district to hire a garden or outdoor teacher or coordinator, to works with your teaching staff to coordinate the activities and lessons that are taught outdoors. The lessons can cover all curriculum areas, as well as activities to build social skills, independent learning and team building.
  • Meet maintenance goals by creating jobs for students, classes or small groups to accomplish throughout the year. Create a shared calendar to outline the needs and then divvy up the tasks. Don’t leave it to one dedicated or passionate person….they will eventually have to move on.
  • Make it the culture of the school to embrace, use, respect and care for your whole campus. The school community spends so much time together on campus, use the entire space to your advantage and care for it as a resource.
  • Remember, your space will be used after school (programs and neighborhood use) and during the summer. Embrace the fact that a variety of users will use the space. Finding ways to welcome them will encourage others to care for it and keep an eye on things when school is not in session.

If you need ideas on how to use your campus for outdoor learning, there are lots of great guides and curriculum resources that provide engaging activities for all grade levels (early childhood, pre-K, K-12).  A few examples include:

  • The BioBlitz. No, this isn’t a game or app (check out the National Parks website). In this activity, students look for all living species on your campus. Have them document what they find and identify the species (plants, insects, mammals, birds, etc.). You can make it as simple or complex as you need to, based on the age and curriculum. Include writing, art, science and math.
  • Scavenger hunt. Have kids look for a different theme, such as all things that collect and move the rainwater (What happens to rain drops when they land on the various surfaces?); have the kids find different shapes in the natural elements on campus; etc.
  • Nature journal. Document the changing seasons on your campus. What are the colors for each season? Temperature changes? Weather patterns? Different animals?
  • Art projects. Have kids pick a couple natural elements and sketch them, using a variety of media. Compare and contrast what is different and same about each element.
  • Plant flower bulbs. Seek donations for flower bulbs and have the kids plant them in a landscape bed. Learn about the different bulbs, the depths they need to be planted, what are the types and shapes of bulbs. Have the kids develop plant markers for each type. In the spring, monitor the progress of growth for each type, have them sketch the flowers, investigate the flower shape and talk about the parts of the plant, notice if pollinators visit the plants, create a cut flower vase and share with a classroom or community group that would benefit from fresh flowers (senior living facility).

As your school starts its journey toward a more natural schoolyard, know that these projects can take years. That’s fine! The program will benefit from starting small and building upon small successes as the project grows and changes over time. Think of a protracted timeline as an opportunity to involve more kids and their families.

Lastly, stay true to your goal. Keep the vision in mind and you will be amazed at the sustaining support you will receive to keep moving forward. Every step you take is for the health and well-being of the kids. You’ll get there.

 

Here are just a few resources that you can check out online.

Children and Nature Network  Green Schoolyards for Healthy Communities – Building a National Movement for Green Schoolyards in Every Community. http://www.childrenandnature.org/wp-content/uploads/2015/03/CNN_GSY_Report2016_Final.pdf

Green Schoolyards America. Sharon Danks. http://www.greenschoolyards.org/home.html

Boston Schoolyard Initiative. http://www.schoolyards.org/projects.overview.html Active since 1995. Schoolyard and outdoor design guides, as well as planning, maintenance and stewardship resources.

Evergreen Green School Grounds. https://www.evergreen.ca/our-impact/children/greening-school-grounds/

National Wildlife Federation. Schoolyard Habitat program. http://www.nwf.org/Garden-For-Wildlife/Create/Schoolyards.aspx  Attract and support local wildlife.

#. #. #. #

Jane Tesner Kleiner is a registered landscape architect, ecologist and environmental educator with work in Michigan and Washington. She has spent the past 25 years working with schools, parks and ecological restoration organizations to create habitat, trails and play areas. She passionately advocates for outdoor spaces that inspire kids’ curiosity. She wears a few hats in the Vancouver, Washington area, and continues encouraging kids of all ages to get outside and explore. Her goal is to make sure every kid has a stick to play with.

 

 

 _______________

FOOTNOTES:

[1] Louv, R., & Lamar, M. (2016, July 07). GROUNDS FOR CHANGE: Green Schoolyards for all Children. Retrieved March 25, 2017, from http://www.childrenandnature.org/2016/07/07/grounds-for-change-green-schoolyards-for-all-children/

[2] Given a full week of school and, we hope, 8 hours of sleep.