Leaning into Content with Lesson Sequencing

Leaning into Content with Lesson Sequencing

by Zachary Zimmerman
Bainbridge Island, WA

s an outdoor educator, I often get sucked into the false binary that lessons are either fun or informative, that content must be sweetened with games, stories, and activities like applesauce for children’s medicine. But stories are one of the oldest forms of teaching known to humankind, and games and interactive activities help students interpret and internalize what they learn on trails, in classrooms, and at home. In this article, I invite you to stop apologizing for your content teaching and start weaving it into lesson sequences that include stories, games, writing activities, and more. Sequences can make your teaching practices more effective, more equitable, and yes, more fun. 

Recently, I learned that teachers visiting Islandwood with their students were passing on the same feedback week after week: many of the lessons our instructors were teaching on ecosystems fell short because students didn’t fully understand what the word “ecosystem” meant. They might be able to give examples (“rainforest”) or describe them somewhat (“habitat”), but they were missing the definition and significance: communities of different living things that interact with each other and their physical habitats. An ecosystem isn’t just a place; it’s a dynamic arrangement of matter and energy; sunlight, water, and nutrients; life, death, and life again. Of course it needs some scaffolding

Because ecosystems are one of my favorite things to teach 5th graders, I took note immediately. Learning about ecosystems helps students understand the world in which they live, sets the stage for deeper sense-making outdoors, and aligns neatly with NGSS standards and cross-cutting concepts. Ecosystems are also teachers themselves, offering lessons on diversity, interdependence, resilience, and identity. When students see forests and intertidal zones as neighborhoods full of unique and diverse beings supporting each other through their mere existence, they may have an easier time valuing their own identities and thinking more about how they fit into their communities. To restate ecologically, they may discover their own niche.

As heady and enticing as these ideas are to me, I know that teaching for equity means letting go of preconceived notions of how students will use my lessons, and creating space and support for them to connect ideas presented in class to their own lives. It also means ensuring that all students are working from the same baseline of knowledge as they explore those more abstract spaces. In the past, I had equated “baseline” with “lecturing” and “lecturing” with “boring”, leading me to approach core content apologetically and half-heartedly.

To address my reluctance and reimagine content teaching as a part of, not apart from, the immersive fun and exploration that drew me to outdoor education, I started experimenting with lesson sequencing: using stories, activities, and games to bookend and contextualize core concepts. What started as an apologetic approach to content has proven an effective and equitable strategy for outdoor teaching that makes complex ideas like ecosystems meaningful, memorable, and fun. Below I outline a favorite lesson sequence on ecosystems that envelopes content with storytelling and modeling activities. But first, a few tips for developing your own sequences.

Work Backwards

Mapping the core concepts you need to scaffold into a larger lesson can reveal where your content time will best be spent. In the ecosystem example below, I use worksheets to get all my students on the same page about producers, consumers, and decomposers: what they are, what they need, and how they relate to each other. Knowing which concepts I need to teach about can also help me select starting lessons that introduce relevant terms or relationships.

Know Your Audience

Are your students quiet or chatty? Do they like individual reflections, pair-shares, or large group discussions? Maybe a combination? Do they ask a lot of questions, or wait for you to give answers? Do any of your students have IEPs or 504 plans? What other accommodations might one or many students need to feel safe, comfortable, and ready to learn and participate? Consider these questions when thinking about your group and reflect on how they might impact your plan. Maybe you need to switch out that starting story for a running game; maybe that running game works equally well walking or sitting.

Find Your Flow

Once you know what information, structure, and supports your students need to reach their learning targets, think about an order of operations that makes sense for the spaces you’ll be teaching, your style, and the energy you expect. Thinking about biorhythms can be a helpful clue here – if you’re starting this module right after lunch, will students be more or less active than if you began your morning with it? There’s no perfect formula here, but Ben Greenwood’s Lesson Arc (Introduction, Exploration, Consolidation) provides helpful inspiration. Personally, I like to start with something engaging that models the ideas we’ll use and end with a game or reflective activity – again, this is where art meets science, so get creative.

Now that you have some ideas for sequencing lessons, let’s look at an example.

Lesson Sequence: Ecosystems and Interdependence

Materials:

  • Storybook
  • Ecosystem worksheets (Islandwood journal is used in this example)
  • Ecosystem cards (make your own or find publicly available regional sets like this one from Sierra Club British Columbia)
  • Ball of string or twine
  • Writing untensils

Lesson 1: Read The Salamander Room by Anne Mazer (read-along here

This is the story of a young boy who brings home a salamander to live in his room. As his mother continues to inquire about how the boy will care for the salamander (and eventually, to care for everything else he has added to his room in the process), students begin to see not only how different living things rely on each other, but the impacts of removing a more-than-human friend from its chosen home.

Additional discussion questions:

  • How did the room change throughout the story?
  • What else would you have changed?
  • What relationships did you notice?

(Of course, any storybook of your choosing that describes habitats, food webs, nutrient/energy cycles, and interconnectivity will work – I just like this one!).

Lesson 2: Ecosystem Components and Definitions

Transitioning into the content component, begin by asking students if they have ever heard of the word “ecosystem” and what it means. While assessing answers, ask whether they saw an ecosystem in the story they heard. These discussions can help decenter the instructor as the holder of knowledge and assess potential leaders in your group.

Next, pass out worksheets/journals and give students 5-10 minutes to complete the assigned pages, encouraging them to quietly work alone or in small groups. Set clear expectations that they should do their best to fill out whatever they know, and that we’ll fill them out together as a group afterward.

 

 

 

 

 

 

 

 

 

 

 

Drawings from a student’s Islandwood journal. Mushrooms are depicted as decomposers, trees as producers, and squirrels as consumers. On the next page, sentence and word starters help students decode core definitions.

 

 

When students indicate that they are done, invite them back to a large group. Ask if anyone can give definitions of producers, consumers, and decomposers, or share examples that they drew or wrote in their journals. This helps individual students confirm or correct their answers without judgment and add test their knowledge by adding their own examples to the discussion. Talking through producer growth, animal consumption, and decomposition a few times helps reinforce how different inputs and outputs relate to the process and emphasizes its cyclical nature.

When students have completed their worksheets and all questions have been answered, move on to Lesson 3.

Lesson 3: Web of Life (adapted from Sierra Club British Columbia)

Because a full lesson plan is linked above, I focus here on ways that I consolidate knowledge from the above lessons, assess content learning, and prepare students to apply these new ideas to future exploration.

Pass out Web of Life cards to your students and save one for yourself. If you plan to introduce a new element later (e.g. birds migrating from habitat loss or new trees planted by conservationists), hold onto those cards.

As you pass out cards, ask students to take a moment and acquaint themselves with their element. Some questions you might ask:

  • Are they a producer, decomposer, consumer, or something abiotic?
  • What do they know about this element?
  • What does this element need to thrive?
  • What threatens it?

When students are ready, begin the lesson as described in the linked plan. Empower students to help correct or add to others’ ideas. For example, if a student assigned “worm” passes to “soil” and says, “I relat to soil because I eat it,” invite the group to discuss what they know about how worms relate to soil or how they get their energy (i.e. decomposition, which makes soil).

Once the web is fully developed, you can take this lesson in many directions, inviting students to consider what happens when one part of the web is removed or changed. When they can see that everything is connected, even indirectly, you’re ready to explore ecosystems!

Zachary Zimmerman (he/him) is an outdoor educator, teacher training facilitator, and insatiable problem-solver residing on the traditional Suquamish/Coast Salish land currently known as Bainbridge Island

Sources Cited

5-LS2-1 Ecosystems: Interactions, Energy, and Dynamics | Next Generation Science Standards. (n.d.). Retrieved May 25, 2023, from https://www.nextgenscience.org/pe/5-ls2-1-ecosystems-interactions-energy-and-dynamics

Greenwood, B. (n.d.). What is Lesson Sequencing and How Can it Save You Time? Retrieved May 25, 2023, from https://blog.teamsatchel.com/what-is-lesson-sequencing-and-how-can-it-save-you-time

Mazer, Anne., & Johnson, S. (1994). The Salamander Room (1st Dragonfly Books ed.). Knopf

Sierra Club BC. (n.d.). Web of Life. Sierra Club BC. Retrieved May 25, 2023, from https://sierraclub.bc.ca/wp-content/uploads/Web-of-Life-Game.pdf

Asking Questions

Asking Questions

Key Considerations for Asking Questions as a
Field-Based Science Instruction

By Amos Pomp

Introduction

We do not ask [questions] in a vacuum; what we ask, how, and when are all related.
– Bang et al., 2018

How can field-based science instructors be intentional with the questions we ask students?

As a graduate student and field-based environmental science instructor for 4th-6th graders in Washington State, I ask students questions all the time. Asking questions is an integral part of learning and doing science and is one of the Next Generation Science Standards science and engineering practices. I believe that the questions I pose as an instructor have the power to either disengage or engage student groups in their learning processes. Thus, considering which questions I ask, and when, is a significant and nuanced part of my teaching practice.

Instructor-posed questions are an important, multifaceted part of effective pedagogy. Instructors should ask their students various types of questions and celebrate various types of answers. Instructors may ask questions to elicit students’ prior knowledge, check their understanding, help them figure out where there are gaps in their ideas, and help uncover ideas that would otherwise go unnoticed (Reiser et al., 2017). Instructors may also ask questions to “help students figure out and refine their own questions” (ibid.).

The way in which instructors ask questions and elicit answers is also important. If I only encourage spoken answers to my questions, I may send an implicit message that I only value verbal and vocal participation in my learning environments. If I only praise the ways in which one student’s artwork connects to my prompt, I’m implying that I prioritize some sensemaking over others’. If I only accept scientific names of plants as correct, I’m indicating what kinds of knowledge I deem acceptable.

Reflecting on this non-exhaustive list of reasons for asking questions, as well as the potential implications of how I solicit answers, has led me to be more intentional with the questions I do ask and how I ask them. I don’t just think about what I am asking my students; I also think about why I am asking it—for what purpose. I think about whom I am asking it to or for and what kind of responses I am expecting from my group. How can I engage them in their own sensemaking and synthesis, creative thinking, and science and engineering processes? To help plan for each new group of students I teach, I’ve developed a framework for how I consider the pedagogical purpose of my questions.

Reflecting on My Own Experience

At the beginning of the school year, my grad cohort and I had many discussions about what teaching and learning look like. From our conversations, we agreed on two key points. The first is that to us, successful field-based science instruction looks like guiding students in their own thinking, observing, and investigating. Rather than responding to students’ questions with an easy answer of my own, one of the routines I adapted early on was asking them, “What do you think?” Even when posed informally, asking students what they think and encouraging a genuine answer is a pedagogical move to redistribute power and agency by encouraging them to gather evidence and explain their own reasoning and learning.

The second point we agreed on is that masterful instructors learn from and alongside their students in processes of collaborative sensemaking. At first, I found this process came naturally. Being new to field-based science education in the Pacific Northwest, it was easy for me to respond to a student’s pointing at something and asking what it was or what was happening without giving them an easy answer. “I’m not sure, have you seen something like it before?” I would say, or “tell me what you notice about it and what it’s doing. Can we come up with three possible answers to your question?” Asking these questions positioned my students as experts on their own experiences and encouraged us to work together to learn about our environment.

As the school year has progressed and I’ve became more knowledgeable about the ecosystem I’m teaching in, I’ve noticed two things happening. In moments where I am doing new activities or teaching lessons in new ways, my questions have remained open-ended and genuine, like the above examples.

In other cases, however, I have found myself struggling to maintain nuanced intentionality in my question asking. Sometimes I notice myself asking students answer-seeking, or “known-answer,” questions—questions to which I already know the answer I’m looking for—because I want the group to reach a specific understanding about a topic based on my own knowledge or some third-party definition (Bransford et al., 2000). Other times, I’ll ask the group a question about an activity we just did and receive mostly blank stares in response. In these instances, I am probably asking the wrong questions and discouraging the divergent thinking, diverse forms of engagement, and collaborative sensemaking and synthesis I’m looking for.

Upon reflection, I decided to create a tool to help me make sure I ask students pedagogical questions with the intention they deserve.

Instructor-Posed Questions: A Framework

When thinking about how to intentionally ask a question to a group of students, here are some key considerations I take into account.

Assessing the state of the group

Before asking my students a pedagogical question, I assess the state of the group. This assessment can happen during planning or in the moment. I think about where the students are or will be physically, as well as what is or will be going on, when I plan to ask the question. Perhaps they would still be riled up after an activity, or they might need a snack. Perhaps a group discussion would not add any value to what’s already happened or could possibly even detract from the experience. Perhaps the group needs to hear the question then move to another location before answering to have time to think and discuss casually on the way. If I want the group to engage in some sort of collaborative sense-making, I do my best to ensure that the group is in a place where most of the students will be able to engage in the process in some way.

Allowing for different forms of student engagement

When I plan to ask a group of students a question, I then think about how I want them to answer. I can ask them to answer in written/drawn form, whole-group share-out, in small groups or a partner, just in their own heads, or some other way. I make this decision based on patterns of what I’ve seen work best for similar groups in similar situations in the past.

Once I’ve decided how I want students to answer my question, I find it’s best to give instructions before asking the question. For example, I might say, “You’re going to answer this question in your journal, and you can write, draw, write a poem or song, or even create a dance or found-material sculpture.” Then I ask the question and repeat the ways that students can answer.

Clarifying the goal or purpose of my question

For this section I’ll use an example wherein my goal is for students to think and learn about the role of photosynthesis in a plant’s life and the role plants play in ecosystems.

With my goal in mind, I could ask, “What does photosynthesis mean?” However, I would likely hear one student’s regurgitating a definition from a textbook, which does not necessarily indicate true learning or understanding. Also, if I ask such didactic questions multiple times to the same group, I often end up calling on the same students repeatedly—missing out on quieter voices—because they are the ones comfortable with sharing in such a way.

I would also refrain from asking, “Who can tell me what photosynthesis means?” This wording implies that it’s time for someone to win favor by being the one who can. It’s a challenge to see who can show off their knowledge, and it doesn’t help a group of students explain how photosynthesis works or why it matters.

Additionally, I don’t want to ask my question if I’m looking for a specific answer. I have to be open to students’ explaining photosynthesis in new ways or talking about other ways that plants get energy and contribute to ecosystems.

Asking a question

Instead of the examples above, I could ask my students, “How do plants get energy?” or “How can we describe a plant’s relationship to the sun?” These explanatory questions engage students in more diverse scientific practices than just naming and defining a chemical reaction (Reiser et al., 2017). If I’m having trouble getting students to move toward photosynthesis, I could ask, “What do you think of when you hear the word photosynthesis?” which I still find to elicit more open-ended responses than the original example.

Something else to consider is that if, for example, I’m teaching a group of students who have never been to a harbor like the one I bring them to for a lesson, any questions I ask the group about what role plants might have in the harbor ecosystem will not carry as much meaning for them if they do not first have a shared, relational experience with plants at the harbor (Reiser et al., 2017). If I can first facilitate a time for them to explore and observe plants at the harbor, then asking them about their own thoughts and questions about plants at the harbor will have much more success. I can also ask questions in ways that allow students to bring in past experiences with other beaches or plants in other ecosystems.

I am also aware while teaching that common lines of questioning in schools are rooted in the discursive patterns of white, middle-class, European Americans. One way that I can expand my question-asking practice is encouraging learners to investigate the “likeness between things” to draw in students who engage in more metaphorical learning by exploring analogies with the question, “What is photosynthesis like?”  (Bransford et al., 2000). Robin Wall Kimmerer agrees: “asking questions about relations illuminates answers that true-false questions may not” (Bang et al., 2018).

Finally, I could also ask questions that help students evaluate their own learning or the learning process, like “how did you contribute to the group in the photosynthesis investigation?” or “how did that activity go for you?” rather than ones that assess what they learned (Rogoff et al., 2018). I would ask these latter questions to prioritize my goal of exciting students about science learning over ensuring that they learn any specific “facts” or “knowledge.”

Deciding not to ask a question

Sometimes, I move through my framework and decide I don’t need to ask the group a question. Instead, I’ll tell the group some of my own thoughts on the matter, or I might just transition to something else entirely. An example of the latter is that if I’m more interested in having my students explore something other than how photosynthesis works, rather than asking them what they know about photosynthesis, I could simply say, “Photosynthesis, which, for those who might not remember, is how plants create their own energy from sunlight, carbon dioxide, and water.”

Conclusion

Asking questions in field-based science education is a nuanced practice. The way instructors ask questions reveals to students both explicitly and implicitly what forms of participation they value, whose knowledge they prioritize, and what kinds of learning they deem acceptable. With a bit of intentionality, however, instructor-posed questions are the key to engaging students in collaborative sensemaking and synthesis, divergent thinking, and science and engineering processes of their own.

 

References:

My mentors, Renée Comesotti and Dr. Priya Pugh

Bang, M., Marin, A., & Medin, D. (2018). If Indigenous peoples stand with the sciences, will scientists stand with us? Daedalus, 147(2), 148-159.

Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn (Vol. 11). Washington, DC: National academy press.

Reiser, B. J., Brody, L., Novak, M., Tipton, K., & Adams, L. (2017). Asking questions. Helping students make sense of the world using next generation science and engineering practices (pp. 87-108). NSTA Press, National Science Teachers Association.

Rogoff, B., Callanan, M., Gutiérrez, K. D., & Erickson, F. (2016). The organization of informal learning. Review of Research in Education40(1), 356-401.

 

ADHD in the Outdoors

ADHD in the Outdoors

Five 5th-grade students sit or stand facing a sunny pond surrounded by lush greenery, working on a writing task or exploring quietly. Photographed by Greyson Lee

Background Music and Birdsong: ADHD in the Outdoors

by Greyson Lee

After several hours of watching my dad bounce around his home auto shop, channeling restless energy into relentless productivity, he finally pauses to look up car parts long enough for me to catch a conversation with him.

I know by this point that my brother, diagnosed with ADHD before either of us can remember, was not the only one in the family with it. My dad hadn’t said the words before then, but when I bring up my own recent diagnosis, he seems to connect the dots to his own vague learning disability diagnosis from before the language was as common as it is today.

He reflects on a story I’d heard before: he’d been failing a math class in high school, so he and his mom fought for, and won, permission to snake earbuds through his hoodie. He could listen to music in one ear while the teacher lectured, and with this background stimulation humming below the teacher’s lectures, he suddenly felt like he could focus on and understand the content of the class.

Even today, my dad always has music on when he’s doing anything: I hear it in the morning when he’s getting ready for work, it’s always on in his car, it’s on when he gets home from work until he goes to bed, and he keeps it playing over the speakers at his station during his entire work day as well. For him, the background noise seems to be an essential tool in allowing him to function day-to-day with ADHD.

The one place my dad doesn’t seem to need his music, however, is outdoors.

It seems that any time students with ADHD come up in outdoor education, there’s a common refrain: “they do much better here”, and even, “you wouldn’t know they had ADHD if nobody told you”. Struggles in the classroom melt away in the outdoors. Some even note that their students with ADHD tend to thrive in an outdoor learning environment, often finding it even easier to engage than their peers do.

What is it about the outdoors that allows people with ADHD to focus so much better? And how can educators- formal and informal- lean into this phenomena?

Tired of Paying Attention

Environmental Psychologist Stephen Kaplan has proposed the theory of “directed attention”: the kind of attention we have to pay in certain situations, like listening to a lecture, in order to consciously control our focus. Directed attention is a choice and a skill, and it might look like tuning out distracting noises, or ignoring the impulse to check social media. The implication is that this conscious effort will eventually cause “attention fatigue”, making it more and more difficult to continue controlling one’s focus. (Clay, 2001)

In a 2004 study, survey results indicated that time spent outdoors led to reduced ADHD symptoms (Kuo & Taylor, 2004). Their results suggest that green spaces are rich in fascination, the other side of Kaplan’s “attention fatigue” coin: a more natural and undirected form of attention that allows the mind to rest.

“Just-Right” Stimulation

In an article for ADDitude Magazine, Dr. Ellen Littman dives into the complex battle between too much and too little stimulation that is often taking place in ADHD brains. Littman explains that in order for brains to be “alert, receptive, and ready to attend and learn”, they need to be stimulated just the right amount; a balance that most brains tend to be able to figure out on their own. (Littman, 2022)

ADHD brains, on the other hand, lack the “reliable coordination of neurotransmitters” that would otherwise allow them to control their own focus. Too little stimulation leads to a kind of boredom often described as “painful” by people with ADHD, and an intense motivation to find some kind of stimulation- often a spike in dopamine- to compensate. Too much stimulation, on the other hand, results in “over-arousal”: feeling overwhelmed, often suddenly, and reacting with irritability, restlessness, or even aggression until able to get away from the commotion and recuperate. (Littman, 2022)

ADHD brains are left either overreacting or under-reacting to stimuli, rarely anywhere in a more “moderate” area that might allow for some control over one’s ability to focus, be receptive, or to engage in learning.

Five 5th-grade students perched on small rocks lean over to watch their classmate pick a shore crab out of the water. Photographed by Greyson Lee

 

“Chill Lo-Fi Beats”: Regulating Input

A few years ago, a series of YouTube playlists and livestreams by the “Lofi Girl” channel garnered widespread popularity; I remember a few professors using them to fill the silence in the classroom while we worked on some assignment or project.

The appeal is similar to that of white noise machines, water features, and the fan you might leave on in your bedroom at night, even if it’s not too hot: silence can be just as distracting as too much noise. In a casual survey conducted by ADDitude Magazine, one respondent shared that background music helps them maintain focus on a particular thing; “when my environment is quiet,” they said, “my mind wanders to various things and not on what I need to be doing.” (ADDitude Editors, 2022)

Background noise can also be a way of drowning out too much stimulation; another respondent shared that soft, familiar background music “helps [them] focus by removing any background noise (dishwasher, washing machine, people outside or around [them]).”  (ADDitude Editors, 2022) Other respondents reported that their need for background noise could vary depending on their task and situation; activities that require high focus might be better paired with silence or very soft music, and “tedious” activities that require less mental focus might be easier with something that distracts the brain.

Of course, everyone’s “ideal” balance of stimulation looks different- but background noise can be a helpful tool in finding it.

A student cradles a rough skinned newt in their hand, and several others reach toward the newt in shared fascination. Photographed by Greyson Lee

Zoning In

It isn’t revolutionary to note the lack of stimulation present in classrooms; in fact, this is openly a design goal. The idea is to lower distractions so students can focus on the only source of stimulation in the room: their teacher.

As a student with ADHD, I had few ways to regulate my balance of stimulation in the classroom. If I needed more stimulation, I could fidget or draw; if I needed less, I could try to go to the bathroom for a break. Oftentimes I just found myself staring glassy-eyed at a wall, my thoughts racing in directions I had no control over, while my teacher droned on pointlessly in the background.

Students are not “cured” of their ADHD when they walk outside, and I still find that certain students need longer transition times, more breaks, more responsive planning, or something to fidget with in order to engage as much as other students can.

But I rarely see those glassy-eyed stares when teaching outdoors, and why would I? There’s so much to look at outdoors, and hardly any walls to zone out onto. Students often fidget, wander, and move their bodies in ways I wouldn’t see in a classroom, but when I finish giving instructions and turn them loose, it’s clear they heard everything they needed to. And I hardly ever see a student need a break from our setting– there are no long bathroom breaks, walking laps elsewhere, or sitting in a hallway to soak in a bit of silence.

There are so many more opportunities for self-regulation outdoors, and the impact on students with ADHD is noticeable. How would their learning experiences be different, and their “academic success” impacted, if their teachers leaned into that?

 

 

 

References

  • ADDitude Editors. (2022, May 20). Background Noise vs. Silence: ADHD Adults on Music & Focus. ADDitude. Retrieved May 6, 2023, from https://www.additudemag.com/background-noise-sensitivity-adhd-music/
  • Clay, R. A. (2001, April). Green is good for you. American Psychological Association, 32(4), 40. https://www.apa.org/monitor/apr01/greengood
  • Kuo, F. E., & Taylor, A. F. (2004, September). A Potential Natural Treatment for Attention-Deficit/Hyperactivity Disorder: Evidence From a National Study. Am J Public Health, 94(9), 1580-1586. https://doi.org/10.2105%2Fajph.94.9.1580
  • Littman, E. (2022, May 18). Brain Stimulation and ADHD / ADD: Cravings and Regulation. ADDitude. Retrieved May 6, 2023, from https://www.additudemag.com/brain-stimulation-and-adhd-cravings-dependency-and-regulation/

 

Credit

Greyson Lee is an art and outdoor educator finishing his M.Ed at the University of Washington.

Trees as Storytellers

Trees as Storytellers

he thought of talking trees conjures up images of the fantastical. Tolkien’s ents patrol the forest, Baum’s forest of fighting trees throws apples at Dorothy, and Marvel’s Groot guards the galaxy. Or, perhaps, we think of those who speak for the trees that cannot speak for themselves: Dr. Seuss’s Lorax, or the dryads of ancient mythology. But I would argue that all trees have a lot to say, if we are willing to listen.

Like all great storytellers, trees have an impressive hook. Each species, a different author, has different tales to tell. Throughout time, some people have listened to those stories, and translated them to a language we can understand. And trees also give us the stories the trees may not even know they are telling, the way a worn and coffee-stained paperback can tell of a voracious and messy reader. Students, lovers of stories oral, written, and visual, can learn from these giants of the forest.

IslandWood, a residential environmental education school on Bainbridge Island, Washington, markets itself to students as “a school in the woods.” On its surface, this imparts expectations of students while on campus. It is not camp, but a school, with all the implications of learning. But what about the second part? The woods as a term indicate the outdoor status of some classrooms, but also plants the idea very early on of the ubiquity of trees. Wood comes from trees, and woods come from trees. This school is where we learn among the trees. Students should be aware of that upfront.

These trees have a long story to tell our students, and the students are ready to listen. When the glaciers retreated from the Puget Sound area 10,000-12,000 years ago, in moved trees from present-day California. The seeds following the glacier’s retreat met an incredibly moist environment that was perfect for the establishment of gargantuan specimens. Even students with individuals of these giants near their school are unlikely to see them in such abundance, or in such a relatively untamed state, covered in moss and lichen.

Students’ chatter while clambering from buses onto IslandWood property is a good clue in to what familiarity they may have with the woods. Students will disembark the bus and are unable to tear their eyes away from the treetops. Audible oohs and ahhs promise for a week of wonder and exploration. Recently, a student walked through the arrival shelter and turned to a friend to say, “so I guess this is what the woods are.” The trees are our ambassadors to these students, and the story they tell is one of upwards growth.

At IslandWood, we teach of the “Big Five:” western red cedar, red alder, western hemlock, bigleaf maple, and Douglas-fir.

The western red cedar is a favorite of many students. On species reference cards, some of the cultural uses are listed: canoe building and basket weaving feature prominently. This already provides a unique connection to place; on their website, the Suquamish tribe introduce themselves as “expert fisherman, canoe builders and basket weavers” (Suquamish Tribe, 2015). This is the identity they first relay to visitors, and one that many students have already been introduced to. To say “this is what the Suquamish used to make canoes and baskets” taps immediately into their understanding of native traditions.

The idea that people tended this land for livelihood before European settlers arrived is abstract for many students. While they may be taught the names of local tribes and heard some of the stories, touching a tree that contributed so heavily to their way of life provides a new experience. I taught a student that the Suquamish use the cedar bark for making clothing, and then heard them explain to a classmate that you can tell the bark is good for weaving because of the way it is stringy and long. The instructor provides one piece of information, and the student is able to gain a deeper understanding from interactions with the tree. The tree is telling the story of its cultural history by making itself so accessible to our young explorers.

A trend that students visiting IslandWood are quick to notice is that many of the red cedars are turning brown and losing leaves. This does not match well with what they have been taught about the definition of evergreen, and they struggle to reconcile reality and the trees. An investigation into why some red cedars are dying and others aren’t will lead students to the reality of climate change. The trees, so long-lived, cannot adapt the same way that other species can. When confronted with this reality, student groups come up with creative solutions, many offering to water the trees with their own drinking water. The trees, for those who listen, are sending out a plea and tell the story of human excess.

The red cedar also introduces students to the concept of sustainability and giving. Just as a dining hall might teach students to not waste food, the trees can show that wasting other resources is avoidable too. The roots, outer bark, inner bark, needles, and branches of trees all serve varied purposes, ensuring that none is discarded. The characteristic swooping lower branches of the tree, which resemble arms outstretched, relate to tradition. One Coast Salish tradition tells of the appearance of cedar tree at the spot when an incredibly selfless man died. IslandWood’s Great Hall has a cedar statue of Upper Skagit woman Vi Hilbert. The arms of the statue are similarly outstretched in welcome to those who enter the space for learning. The tree that gives its whole self to the people who need it sits with its branches outstretched as a welcome for more users.

When students learn the red cedar and later point it out on the trail, the swooping branches are most often cited as their point of identification. When asked what those branches remind them of, the first answer might be “the letter J,” but given some time, students arms will go out in an open gesture to mimic the tree. “It’s the tree of life,” they say, feeling connected to the history of that species.

The Douglas-fir tree, a mainstay of this ecosystem, is another favorite of students. While learning about the tree, students inevitably discover a cone on the ground, and pick it up, many questions having sprung forth in their minds. As trees that can grow over 300 feet tall with few lower branches, the opportunity to have a proxy for what goes on above our heads is incredible. The cones are unique to this tree, and tell a great story.

The cones have a two-tone property, as the seeds protrude beyond the scales of the cone. Tradition would tell that those lighter colored pieces are from a great fire that ravaged the land millennia ago. As the fire raged, animals fled, and the mouse ran to seek shelter. Unfortunately for the mouse, every tree it asked for help was worried for its own survival, unable to help the forest friend. When the mouse came upon the Douglas-fir, it opened up its cones and instructed entry; its lower branches would be above the heat of the fire, and its thick bark would protect it from the heat. The mouse and tree survived the fire, and the cones show a vestige of that encounter, as there appear to be little legs and a tail sticking out from every cone.

After hearing this story, students become experts on Douglas-fir identification. If their eyes are cast downwards, looking for signs of life on the trail, they see the cones and are reminded of the story they learned. If they are up, facing ahead and all around, they will see the thick bark that protected the tree. The stories reflect the nature again, and tree identification by means other than leaf recognition starts to be a possibility for students.

IslandWood property, once seized from the Suquamish, was the site of a major logging operation. Students see many trees and marvel at their size and age, but a hike to the harbor tells a different story of these trees. The trees that they have become familiar with are members of species that may live over one thousand years, but this space in particular is a reflection of its past. Blakely Harbor is the former site of what was “the largest, highest-producing sawmill in the world” (Bainbridge Historical Museum, n.d.).

The site at the harbor is unmistakably the vestiges of a former factory of some sort. Some students come in aware of the logging history of the area, and they are reminded of that history by the remnant logs that stick upright out of the harbor, former supports for the mill infrastructure. Some students surmise that the wood, decaying, waterlogged, and now home to aquatic plants, are a forest that has been cut down. When presented with the uniformity of the timber, especially as compared to the forests at main campus, they are eventually reminded of some man-made structures, and then the history of the logging operation can be explored.

To many of these students, IslandWood is the pinnacle of wild. Yet this adventure shows the proclivity of some humans to extract natural resources past their sustainable harvest. The trees that remind the students to be sustainable and giving are the same species that were extracted, sent into the mill and out to be shipped to other parts of the country and the world for human consumption. The Douglas-firs that protected the mice from the fire were cut down and extracted, providing little habitat for any animals.

The average age of street trees in Seattle is 3 years (Brinkley, 2018). Students may understand trees can live to be hundreds of years old, but learning that Douglas-firs can live to be over one thousand years old makes their eyes light up with wonder. Even the relatively young trees on campus have been present for decades, watching the landscape change with the inhabitants. Coming to an outdoor learning facility where the trees reach hundreds of feet in the sky can instill a feeling no book or photo could. Let the trees greet our students with arms and branches wide open.

Marlie Belle Somers is a graduate student in the Education for Environment and Community program at IslandWood, partnered with the University of Washington.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Remnants of the lumber mill docks at Blakely Harbor. Students use this as a clue while investigating what came before our campus stood on these grounds. Photo by Marlie Belle Somers.

 

 

 

 

 

 

 

 

 

 

 

Bainbridge Island Historical Museum. (n.d.). Port Blakely: Portrait of a Mill Town. Retrieved from http://bainbridgehistory.org/port-blakely-portrait-of-a-mill-town/
Brinkley, W. (2018, November 2). Urban Ecology. Lecture presented in Antioch University, Seattle.
Suquamish Tribe. (2015). History & Culture. Retrieved from https://suquamish.nsn.us/home/about-us/history-culture/

Immersive Storytelling

Immersive Storytelling: A Reminder to Read to Your Students Outside

By Hannah Levy

Sitting amongst towering cedars as the sun treated us to the last bits of golden hour, our final field study day was coming to a close. We had a hard week, for many of my students, this was their first encounter with nature and first time away from home. The group had been struggling to work cohesively and accessing their focused attention had proved incredibly difficult. I wanted so dearly for my students to experience a moment of wonder. To capture a sense of magic and connection to our surroundings, if only fleeting. I had planned to read them a book in a nearby treehouse, but looking around realized I had no better classroom at that moment than the forest floor on which we sat.

“This is the ancient forest. This is the three-hundred-year-old tree, that grows in the ancient forest…” I read softly. Immediately, one of the students looking back and forth from the picture in the book to the tree before them blurts out, “Is that the 300-year-old-tree?” As we make our way through the story, we continue making connections. One student sees the gnarled roots jutting out before them, and asks “Are these roots?” Another recognizes the red cap of the Pileated Woodpecker that graces the page, “That’s the woodpecker I saw!” A Barred Owl winds its way into the story, just like the one we saw together on our first day in the field. A resounding “whoaaa” and “there’s our owl” makes its rounds. And finally, the most captivated question of all as we end the story,“…is this the ancient forest?”

As an emerging educator, moments like these still feel like unprecedented breakthroughs. I said goodbye to my students that day and reflected on the simple and poignant impact of our storytelling session. All this time, I had been pouring over how to craft lesson plans that inspired authentic connection and here, right under my nose, was one of the simplest and most powerful tools of all: immersive storytelling. In just a few short minutes of read aloud time we had accessed our collective curiosity, practiced information recall, and made connections about an ecological system. In outdoor education, where students are often thrust into an entirely new context, the familiar structure of classroom storytelling time had proved incredibly effective.

Today, a Google search for “immersive storytelling” will return results about the latest VR headset or educational video game. While these resources provide essential access for many students, it is critical we not forget the power of a nearby park, backyard, front porch, or garden bed. In my own lesson planning, I consider immersive stories to be books that reflect the setting, observations, and lived experiences of my students. There is nothing quite like the feeling of being absorbed by a book, as if the world around you has melted away and only you and its characters exist in that moment. This is the intention of incorporating immersive stories into outdoor education, to rouse a sensitive connection to our place, our learning, and our peers.

 

Here are eight easy strategies to craft an immersive storytelling experience with your own students in an outdoor setting (many of these tips can easily be adapted for classroom learning):

  1. Story selection

Select your stories based on real-life encounters, using primacy of experience to your advantage. Earlier in the week, I had planned to read students a story written from the perspective of a tree. However, after seeing the owl, I decided to select a book that I knew would offer connections to our week. Consider keeping a list of “immersive friendly” stories that reflect the settings in which you teach and the experiences your students may have at your outdoor education program.

 

  1. Preview the book

Preview the book on your own ahead of time by reading aloud to yourself. This will help you deliver the story more confidently later on and better enable you to use your voice to cue student attention if you know which plot elements are coming. Previewing also ensures the plotline does not contain any content that might be triggering to students with known trauma.

 

  1. Scaffold student observations

Build up the magic by weaving time for students to notice their surroundings throughout the day, share their wonders, and make claims. Prompt students with questions that you know are later answered in the story. When I plan to read students The Ancient Forest I subtly introduce observations of tree snags with holes from the Pileated Woodpecker, visit with a taxidermy Barred Owl (if we don’t encounter one in real life), and invite students to search for macroinvertebrates in the soil. All of these elements later appear in the story and by scaffolding our week with interactions with real elements from the story I intentionally build a more immersive experience for all students.

 

  1. Location, location, location

Scope out your location. Meet the needs of your group by scouting a few locations ahead of time. Is the space accessible to all students? Do you need to make any accommodations to ensure everyone is able to engage? If feasible, always allow for free explore time at your location as a strategy to both incite curiosity and ease any fears or unfamiliarities your students may have with the space.

 

  1. Meeting student needs

Think about context, how have you built up the moment? Are students aware that they will be having quiet listening time? Have they had time to advocate or and meet any needs they might have? If snack, water, or bathroom breaks are even remotely on the horizon consider taking them before you begin in order to mitigate distractions and discomfort. Immersive storying telling is highly dependent on everyone being included and feeling engaged. Design your session to meet any needed accommodations for english language learners or students with accessibility needs.

 

  1. Use grounding techniques as you begin

Grounding activities prompt reorientation to a present moment, often using sensory awareness strategies to cope with overwhelming feelings, anxiety, or, in the case with many outdoor education students, nervousness in a new place with different educators. Awareness of our sensory experiences are also an avenue for deeper connections with our surrounding environment. There are a few easy grounding prompts as you can use as you prepare to read: practicing mindful breath, feeling the temperature and breeze on our face, running dirt through our fingers, or listening and counting the number of sounds. Allow ample time for students to downcycle and re-regulate their focus. Adapt your grounding prompts to fit the sensory abilities of your students.

 

  1. Pacing is your friend

While the number of seconds that pass may be just the same, novel experiences seemingly expand our perception of time. Use this to your advantage with students. If possible, pick a book they have not yet encountered. Go slow, do not rush as you read. Set a pace that allows for students to engage in their observational skills as they listen. Model a sensory moment for them, for example, with my students we looked up into the trees, put our ears to the ground to listen for bugs, and felt the roots that surrounded our feet.

 

  1. Welcome questions and collaboration

Welcome questions from your students. Part of the immersive storytelling experience is to allow students to make. Field questions as you read without delving too deep into tangents. Use the characters and plotline of the story as opportunity for students to make science and real-life connections. If your group is comfortable reading aloud, consider using a pass and read style of read aloud to engage students further.

 

 

References:

Booth Church, Ellen. “Teaching Techniques: Reading Aloud Artfully!” Scholastic Teachers, Scholastic, 2018, www.scholastic.com/teachers/articles/teaching-content/teaching-techniques-reading-aloud-artfully/.

“Grounding Techniques.” Prince Edward Island Rape and Sexual Assault Center, PEIRSAC, 2018, www.peirsac.org/peirsacui/er/educational_resources10.pdf.

Lindamood, Wesley. “Take Our Playbook: NPR’s Guide to Building Immersive Storytelling Projects.” NPR Training, National Public Radio, 25 June 2018, training.npr.org/digital/take-our-playbook-nprs-guide-to-building-immersive-storytelling-projects/.

Paul, Pamela, and Maria Russo. “How to Raise a Reader.” The New York Times Books, The NY Times, www.nytimes.com/guides/books/how-to-raise-a-reader.

Reed-Jones, Carol. The Tree in the Ancient Forest. DAWN Publications, 1995.

What Is Sensory Awareness. Sensory Awareness Foundation, 2018, sensoryawareness.org/about/.

###

Hannah Levy is a graduate student at the University of Washington, completing her Certificate in Education for Environment and Community at Islandwood.

E.E.’s Philosopher King (Pt 2)

E.E.’s Philosopher King (Pt 2)

Photo courtesy of Mike Brown.

Not One More Cute Project for the Kids:

Neal Maine’s Educational Vision

 

by Gregory A. Smith
Lewis & Clark College, Professor Emeritus

 

PART TWO
(see Part One here)

Sustaining Neal’s Place-Based Vision of Education: Lessons Learned

Despite the power and attractiveness of these educational practices, few of them remain in evidence after the close to 20 years since Neal retired and started devoting his time to land conservation and nature photography, one of the reasons he sought me out to document central elements of his work in Seaside and the north coast. He is thus well aware of the difficulty of institutionalizing teaching approaches that run contrary to the direction embraced by most contemporary schools. Part of the reason behind this outcome might be related to the way this dilemma is framed in dualistic terms. Rather than seeing the implementation of Neal’s vision as an either-or proposition, a more productive strategy might be to adopt a both-and perspective and then find ways that more of the kinds of things that Neal encouraged could become part of the mainstream educational agenda, not replacing what is now familiar and widely accepted but balancing this with an approach capable of generating higher levels of student engagement, ownership, and meaning. To that end, here are six lessons I take from what I’ve learned from Neal over the years:

  1. Give as much priority to student questions as to required standards.
  2. Value excited learners as much as competent test takers.
  3. Make as much time for community and outside-of-classroom explorations as the mastery of textbook knowledge.
  4. Create organizational structures that encourage creativity as much as accountability.
  5. Encourage teachers to partner with students as co-learners as much as they serve as their instructors.
  6. Develop teachers as alert to unexpected learning opportunities as they are to curricular requirements.

Give as much priority to student questions as to required standards. Human beings are intellectually primed to investigate questions whose answers are not immediately apparent. Think of the appeal of mystery novels, movies, or television programs, our attraction to riddles, the appeal of crossword puzzles. Although these formats involve no ownership on the part of readers, listeners, or players, they still are capable of eliciting attention and time commitment. Even more powerful are the questions we come up with ourselves. Part of the power of the educational approach Neal encouraged teachers to develop lay in the way he tapped into this human desire. Here’s one more story from the tour as an example of the possible. The students who had been involved in the Pompey Wetlands project at one point got ahold of a tape recorder and oscilloscope and began recording one another’s laughter. They had been studying the sounds and images (on the oscilloscope) of whale songs. They wondered whether their individual laughter would have some of the same recognizable visual features on the oscilloscope as what they had observed with whales. They found that they did and after a time could associate different visual patterns with the laughter of specific students in the classroom. Imagine their fascination at having made this discovery. Such fascination is the stuff of serious learning.

Value excited learners as much as competent test takers. Making time for student questions Is one way to excite learning. Another is to provide the opportunity to do things as well as hear about them or meet people as well as read about them. Part of that doing can be as simple as taking a walk in the woods or planting a garden. Part of it could involve designing an experiment to see whether moss really does only grow on the north side of trees. Part of it could involve participating in a group that sees what’s on the river bottom across a transect of the Columbia River. The possibilities of the doing and the investigating are nearly limitless. Such learning opportunities take advantage of human curiosity and the pleasure our species takes in gaining new skills and competencies. I can imagine some of the stories that children who had learned to keep a boat on straight course across the Columbia must have told their parents when they got home that evening—or what students who participated as photographers in the Day in the Life project shared. Not all learning experiences in school will be as memorable or as exciting as these, but some of them should be and not only on an infrequent basis. Things should be happening in school that fire students’ imaginations and intellects, things that instill in them a desire to learn more. Mastery of information for tests of one sort or another is one the requirements of life in modern societies, and it is a mastery we desire from the experts we turn to when in need of medical, legal, or mechanical services. The demand for such testing is not going to go away. But what ignites deep learning is an emotional connection with different topics, the personalization of learning that Neal sought to spread throughout the Seaside School District, something much more likely to happen by getting kids into the thick of things and engaging them in projects that demand their involvement.

Make as much time for community and outside-of-classroom explorations as the mastery of textbook knowledge. The knowledge found within textbooks is not without value; it is, after all, one of the central tasks of education to transmit culture to the young. At issue is whether this culture is being linked to the lives of children and youth in ways that communicate its significance and meaning. In the past, the authority (and fear) invested in teachers, ministers, and older relatives was enough to ensure the attention of many children to these issues. This is no longer the case in part thanks to the media, to mass culture, and to the weakening of traditional institutions like the family, school, and church. Place-based educators argue that one way to address this issue involves situating learning within the context of students’ own lived experience and the experience of people in their community. When this learning also engages them in the investigation of important local issues and provides them with the opportunity to share their findings with other peers and adults, so much the better. One of the strongest motivators for human participation is the chance to engage in activities that are purposeful and valued by others. Experiences like the health fair described earlier can both encourage involvement and strengthen students’ mastery of the knowledge and skills their teachers are attempting to convey to them. More students, furthermore, seem likely to produce higher quality work when they grasp its social significance and know it will be viewed and examined by community members as well as their teacher.

Create organizational structures that encourage creativity as much as accountability. One of the consequences of the standards and accountability movement since the 1980s has been the tendency on the part of many educators to teach to the test and for their administrators to assess their competence on the basis of students’ scores. School administrators have also become more likely to require teachers to justify the activities they bring into the classroom on the basis of specific curricular aims or benchmarks. Given the degree to which schools, for decades, have failed to adequately prepare non-White and lower income students, accountability structures are clearly needed, but the way they are currently being used has resulted in a narrowing of the curriculum and a reduction in teachers’ ability to respond to learning opportunities presented by either students or community members. Place- and community-based education requires the capacity to improvise and make use of instructional possibilities that present themselves during the school year; these possibilities can’t always be anticipated. Embracing them demands the willingness of teachers to follow interesting leads while at the same time looking for ways that curricular requirements can be addressed by doing so. When schools impose both constraints and reward structures that inhibit this kind of flexibility, fewer teachers become willing to experiment in the way teachers who worked with Neal were able to. School districts can go a long way to encouraging creativity by inviting innovative teachers like Neal to share their expertise with others, either as teachers on special assignment or as members of within-district teams responsible for professional development. Addressing policies that affect daily schedules, the school calendar, and transportation requests can also do much to make learning in the community both possible and accessible.

            Encourage teachers to partner with students as co-learners as much as they serve as their instructors. It is not surprising that teachers feel uncomfortable about venturing into unfamiliar intellectual terrain with their students, something that gaining knowledge about what may be a new or minimally examined place and community will necessarily require. The same thing is true of pursuing questions that aren’t going to be answered by the textbook but demand data gathering and analysis. Teaching in this way involves a certain relinquishment of control and the willingness to trust students to be engaged participants in a process of collective learning. This doesn’t mean that a teacher only becomes a “guide on the side” completely following students’ lead and offering assistance only when needed. The teacher instead becomes a “model learner,” the person in the room with more expertise in knowing how to frame questions, seek out information, assess its credibility, locate appropriate experts, create experiments, organize data and analyze findings, and prepare presentations. There will still be a need for mini-lessons about specific content tied into students’ investigations, but the primary task of a teacher with many place-based units will be—like a graduate school advisor—to demonstrate what it means to be an independent learner committed to uncovering the truth inherent in different situations—just as some of the students attempted to discover whether moss always grows on the north side of trees when they began asking questions of the watershed. Moving into a role like this will be disconcerting for many teachers, but the rewards can be worth their initial discomfort as they find themselves no longer teaching the same thing every year but joining their students in a process of intellectual discovery and knowledge creation.

            Develop teachers as alert to unexpected learning opportunities as they are to curricular requirements. Enacting the previous five suggestions involves cultivating teachers who feel competent enough about their capacity as educators–drawing upon an analogy from the kitchen–to invent new and healthful dishes from ingredients at hand as they do following recipes. Recipes are certainly useful, but the test of an experienced cook is found in what they can create from scratch. Toward the end of our day together, Neal told a story about a storm-felled Sitka spruce in a park just across the street from a local middle school. Neal and a teacher there recognized the learning potentiality of this fallen giant and were able to forestall city employees for a couple of weeks as students conducted a tree necropsy. Especially valuable was the possibility of seeing at ground level the biological activity that goes on at the crown of a mature tree. In many instances, this learning resource would have been seen as no more than a mess to be cleaned up rather than an opportunity for an in-depth and unique scientific investigation. Novice and even experienced teachers need to be exposed to stories like this one that invite them to consider possibilities they may have never or rarely encountered during the course of their own education. Neal recognized that teaching in this way might be more of an art form than something that cab be easily taught but still offered the following guidance: “Don’t sleep on the way to school. Have your brain engaged. Always be looking for opportunities to make it come to life, especially if it’s community based. That really makes it work!”

 

Paying It Forward

My day-long journey through a partial history of Neal Maine’s work in Seaside deepened my understanding of his vision of the possible and at the same time his frustration with how difficult it has been to get many of his good ideas to stick. Early in our conversation he spoke of the way our society’s conventional vision of schooling constrains the education he believes needs to happen if young people are to grow into responsible citizens able to bring fresh and potentially more appropriate ideas to the challenges of living in the 21st century. Rather than asking students to be the passive recipients of information passed on to them by others in an effort to prepare them for adulthood and citizenship, educators need to give children the chance to participate now as data gatherers, knowledge producers, and community participants. As Neal put it, “You ought to exploit someone who is uncontaminated with having the same old answer. . . . How much could you exploit them, so to speak, in a positive, productive, humane, and sincere way? The irony of it is that the effort to exploit that capacity becomes the most powerful preparation possible for a later point in your life cycle which is what we should call adulthood.” This, not the creation of “one more cute project for the kids,” was Neal’s aim when he attempted to stimulate educational innovation in districts along the Northern Oregon and Southern Washington coast and influenced the thinking of rural educators across the United States as a board member of the Annenberg Rural Challenge.

He found that institutionalizing changes like the ones he enacted is not easy. A similar lesson was learned through the Rural Challenge, as well. As a board member of the Rural School and Community Trust I had a chance to be in touch with a number of the schools or districts that had received grants from the earlier Rural Challenge. Without the added resources and the network of support provided by that well-funded effort, it was difficult for teachers and administrators to sustain the work they had accomplished during that five-year period.

Regardless of these difficulties, ideas set in motion during that time are continuing to evolve. One of Neal’s Oregon colleagues, Jon Yoder, played a significant role in shaping the Great Lakes Stewardship Initiative in Michigan that has sought to make environmental stewards out of the state’s children and youth for over a decade. Much of the work done there bears the stamp of Neal’s efforts, affecting over 115,000 students since the program began in 2007 (https://greatlakesstewardship.org/). Across the United States, a survey of place- and community-based educators completed in 2016 surfaced over 150 schools that are retooling their curriculum and instruction in ways that advance the aims Neal pursued in the Pacific Northwest (https://awesome-table.com/-KlsuLBGU0pYWpjFH1uh/view). Many other schools were also surfaced through a project sponsored by the Getting Smart website that has created a blog where teachers have been able to post their own stories about place-based education (http://www.gettingsmart.com/categories/series/place-based-education/). Finally, well-established institutions like Eastern Michigan University (https://www.emich.edu/coe/news/2016/2016-05-10-a-new-wave-of-urban-education.php) and the Teton Science Schools in Wyoming (https://education-reimagined.org/pioneers/teton-science-schools/) are creating teacher education and professional development programs aimed at preparing teachers able to embrace and then deliver learning experiences likely to lead to the forms of participation, citizenship, and community change Neal hoped to engender.

Whether schools on their own will be able to support and sustain innovations like these remains an open question, but the persistence of these ideas and the possibilities they are stimulating seem hopeful. Believing as I do that cultures change more through the telling of stories than bureaucratic manipulation, I encourage readers to have conversations about the work of Neal Maine and his educational vision. Going even further, for those of you who are teachers, try some of these possibilities out in your own schools and communities and see what happens. Then share your experiences with others—both the things that work and those that don’t. Learn from one another. As a tribute to Neal and the future, let’s see how long we can keep these ideas alive and how far we might be able to spread them.

Greg Smith is an emeritus professor who taught for 23 years in the Graduate School of Education and Counseling at Lewis & Clark College.  He’s keeping busy in his retirement serving on the board of the Great Lakes Stewardship Initiative in Michigan and the educational advisory committee of the Teton Science Schools in Wyoming; at home, he’s co-chairing a local committee that is seeking to develop curriculum regarding the Portland-Multnomah County Climate Action Plan.  He is the author or editor of six books including Place- and Community-Based Education in Schools with David Sobel.