Earth Connections: Science Through the Seasons

Earth Connections: Science Through the Seasons

Kindergarten students admire a sunflower held by an Oxbow Farmer Educator while snacking on carrots during their fall field trip. Photo credit: 2016 Jess Eskelsen

Science Through the Seasons

by Shea Scribner
Oxbow Farm and Conservation Center
Carnation WA

igns of the shifting seasonal cycle are all around us. Children are especially keen to notice and appreciate the changing colors of leaves, frantic activities of squirrels, and blossoms slowly turning to fruits on apple trees, but how often do they really get to explore these wonders of nature at the place most specifically designed for learning—their school? With so many subjects to teach and standards to meet, how can teachers follow their students’ passions and incorporate environmental education into their curricula? With an entire class of kids but only one or two teachers to supervise, is venturing outside the classroom a safe and productive use of precious class time?

Beginning in 2016, with funding from an Environmental Protection Agency grant (EPA grant #01J26201), Oxbow Farm & Conservation Center’s team of Farmer Educators and Frank Wagner Elementary School’s Kindergarten teachers dug into these questions to co-develop and teach monthly environmental education lessons in the classroom, around the schoolyard, and on the farm. Through intentional relationship-building meetings and workshops with the teachers, we worked to better understand the specific needs and opportunities we could address through the new partnership between our nonprofit organization and their public school. We found that by following the natural curiosities kids have about the world outside their classroom window, we could address curricular and behavioral challenges and build programs that both captivated the student’s attention and nurtured their enthusiasm for learning. The early learner-focused lesson plans and activities, best practices, and key lessons learned from the project now populate an online compendium on the Oxbow website. We seek to share our story with other formal and informal educators who are working to address similar challenges, and spark ideas for how to incorporate seasonal, developmentally appropriate, place-based environmental education into their practice.

The “Earth Connections: Science Through the Seasons compendium takes the form of a beautiful tree, a fitting metaphor for a natural system where all parts contribute to the tree’s wholeness and growth to reach its full potential. The roots and trunk serve as the main base of support for plants, representing the foundation and core of our growing partnership with the school—take a peek into the planning process involved in this project, other organizations we partnered with, academic literature which informed our lessons and methods, and best practices for working with students and fellow educators. The branches growing from the sturdy trunk are specific place-based and Next Generation Science Standard (NGSS)-supportive lesson plans, suggested activities, and short videos recorded by the Oxbow educators, linking learning themes throughout the three seasons of the public-school year: fall, winter, and spring. With the overall goals of connecting lessons to the students’ specific environment and building skills of science investigation and inquiry, each experience was additive and built upon to together tackle the NGSS of K-LS1-1: “Use observations to describe patterns of what plants and animals need to survive.”

Much like our tree changed through the seasons, the students involved in the journey with us sprouted, grew, and transitioned throughout the school year. We invite you to channel the mind of a child as we guide you through the journey of a Frank Wagner Kindergartener experiencing outdoor EE with Oxbow and their teachers.

 

A volunteer farm naturalist asks kindergarten students about the crops they’re finding on the Kids Farm during a fall fieldtrip. Photo Credit: 2017 Jess Eskelsen

Fall:

Throughout this season, the remaining produce is plucked from Oxbow’s farm fields and pumpkins begin to turn from shiny orange to fuzzy black goo. As vibrant native trees and shrubs drop their leaves, humans and critters alike stash away the remaining treats of the season and work to prepare their homes for the cold, dark winter ahead. So too, young people across the region pack their backpacks full of snacks and supplies, bundle up in rain gear, and transition from summer beaches and sunlit backyards into the warm halls of their school every fall.

For some kindergarteners at Frank Wagner—a Title 1 school where many did not have the opportunity to attend preschool—the first time they transition into the fall season in the classroom can be understandably scary. The students are navigating a whole new environment, different schedule, and unfamiliar social expectations, all without the support of the primary caregivers whom they’ve relied on for so many seasons prior. Teachers are faced with the exceptional task of setting routines, helping every student feel safe, and helping students understand their role in their new classroom community. We found that many of the challenges of the early school year can be addressed through activities and practices that focus on building trust, sharing personal stories, and setting expectations for the new relationships students will build with teachers and one another.

Two students sit together behind large rhubarb leaves, playing a game of hide-and-seek (and finding hidden frogs and insects living in the field) during their spring fieldtrip. Photo Credit: Jess Eskelsen

Oxbow Educators visited the classrooms in the fall and collaborated with the students to construct a “CommuniTree” contract. Together, we used the structures of an apple tree to guide discussion of what sweet “fruits” both students and teachers hope to reap from their experience at school and on the farm, which “beehaviors” will help those fruits mature, and what obstacles to learning might be acting as big “rocks” in the soil, keeping the class’ roots from growing strong. We then began exploring the concept that learning can happen both in the classroom and outdoors through the Inside-Outside sorting activity. Students were given opportunities to express their own understandings of food and nature through prompted drawings, which we used as a baseline for assessing student growth throughout the school year. The Kindergarteners also came out to Oxbow for a Fall Farm Adventure, an introduction to how food grows and the many plants and animals that call a farm home, stoking their curiosity and excitement about the ongoing Farmer visits throughout the year. The fall season also included an introduction to the concept of “habitat,” a recurring and kindergarten-friendly theme that connected student learning about plant and animal needs throughout the rest of the year.

Winter:

For most of us on the west side of the Cascades, winter is cold, dark, and most of all, WET. Farm fields throughout the Snoqualmie River Valley rest quietly under risk of flood while puddles grow into lakes in school parking lots. Rain has shaped the landscape for thousands of years and water continues to connect rural farmland with urban neighborhoods. Dormant plants focus on underground root growth, and many animals must also conserve energy by hibernating or digging deep into warm piles of decomposing fall leaves to survive frosty temperatures.

An Oxbow Farmer Educator helps students find and sample tomatoes growing in a high tunnel during their fall fieldtrip, catching the tail end of the growing season on the Oxbow Kids’ Farm. Photo credit: 2016 Jess Eskelsen

Building on the relationships forged through the fall, winter was a time to begin channeling student’s excitement toward specific learning targets, helping them dig deeper into their wonderments and explore the systems connecting us to one another, and the greater planet we’re all a part of. With now-established routines and a classroom culture helping kids adhere to behavior expectations, students were ready to build on the basics and learn how to ask specific questions, make and share their observations, and consider new concepts. The weather during the winter months kept most of our lessons in the classroom, but certainly didn’t keep the kids from hands-on learning opportunities and ongoing nature connections!

Since things are a bit too muddy at Oxbow in the winter, we brought the farm into the classroom in the form of real live wiggling worms, giving students a chance to gently interact with the creatures as they sorted through the contents of their habitat during the Soil Sorting Activity. Students also identified what components serve as food and shelter for the decomposers to come up with a definition of what “soil is” and then used their observations to design and build a small composting chamber for the classroom. The teachers took this introductory lesson and built on it throughout the winter to address other parts of their curricula and learning targets: helping their students develop fine motor skills by cutting pictures out of seed catalogues and newspaper ads, then sorting the foods into those which worms can eat and those they cannot, and finally gluing their colorful collages onto posters and practicing writing the names of the foods in both English and Spanish. Further exploring habitats and plant and animal needs, we followed student curiosity into the schoolyard to investigate if the schoolyard is a healthy habitat for squirrels and learned how Squirrels and Trees help meet each other’s needs.

The Snoqualmie River flowing past Oxbow joins with the Skykomish River right near Frank Wagner to form the Snohomish River, a perfect natural connection to frame an investigation! As winter transitioned into (a still wet) spring, a Watersheds lesson helped to reinforce the link between farm and school, giving students a chance to work with maps of the actual landscape to trace the route of a raindrop as it would flow down from mountaintops and through interconnected rivers, and illustrate many human and natural features that use and depend on this water.

 

A kindergarten student carefully draws in her science notebook, documenting a specific apple tree she observed in the orchard. Photo credit: 2017 Jess Eskelsen

Spring:

Early-season native pollinators like blue orchard mason bees are a Farmer Educator’s best friend. Not only do these cute little insects help flowers turn to fruits and seeds, but they do so in a kid-friendly manner, hatching from hardy cocoons into adults friendly enough to hold without fear of a sting! With the warmer weather, students were able to spend more time outdoors exploring nature around the schoolyard and came back out to Oxbow to see how the big pumpkins they harvested back in the fall get their start as tiny seeds in the cozy greenhouse. With spring’s official arrival, the time had come for all that fall fertilizing and deep-winter pondering to transition into a growing, independent entity—be it a seedling or an excited student!

Springtime is a season full of vigorous growth and the kindergarteners were practically bursting to share with us all they’d been learning about through the winter. The students were ready to dynamically explore and understand the many connections between their lives, the farmers, and the plants and animals they saw popping up from the warming soils. Lessons in the springtime harnessed this energy by playing active games during multiple field trips to the farm and further investigating the nature around the schoolyard, all with a focus on connecting students more intimately with their sense of place.

Through an early spring field trip focused on Animals in the Water, students participated in a macroinvertebrate study, closely examining the “little bugs” that rely on cool, toxin-free water in the oxbow lake, and played games embodying the flow of nutrients through the freshwater food web these bugs are an integral part of. Their Spring Farm Adventure field trip and Orchard Stations had a focus on lifecycles and natural processes they could observe firsthand: how the buds on the orchard trees would soon (with a little help from the farmers, sunny and wet weather, and pollinators) become summer’s sweet fruits, and how the growing season for most food crops in this region is really just beginning as their school year comes to an end. As an end-line assessment of the student’s change in environmental understanding, we asked the students to again “draw a picture of nature” and were impressed to see the concepts of life cycles, interdependence of organisms, habitat needs, and where food comes from recalled and illustrated so eagerly by the students.

Our Tree

Behind every future environmental steward there is a spark of wonder which must be fanned to a flame, often with the support of dedicated educators and an array of tried and tested strategies. The Foundation of the tree includes a selection of Best Practices, which are continually growing. These ideas and strategies are intended to prepare students for outdoor science learning and provide teachers with the tools and skills to feel confident teaching in the outdoors.

Of course, none of the curricular branches would be strong without the solid structure of the trunk and roots. Building strong relationships with the teachers, school district, and other nonprofit partners throughout the project was integral to understanding the specific needs of the kindergarten classes and how informal educators can best support their in-class learning. We look forward to continuing to work with the students through this spring and beyond as we help build a school garden on their campus, giving students of every grade more opportunities to discover the magic of growing plants, harvesting food, and caring for worms and native wildlife. Our Earth Connections compendium will continue to be populated with additional resources and we hope to hear from educators like you about how you’ve used the materials, your recommendations for improvement, or ideas for expansion!

We are thrilled to share the fruits of this partnership with fellow educators and hope you find inspiration to continue exploring and learning from nature, both inside the classroom and around the schoolyard, maybe even taking a field trip to a local farm or community garden! You can learn more about Oxbow Farm & Conservation Center at www.oxbow.org.

 

About the author:

Shea Scribner is an Environmental Education Specialist and Summer Camp Director at Oxbow Farm & Conservation Center in Carnation, WA.

Climate Scientists

Climate Scientists

On a sunny fall day in Oregon students are outdoors learning about the new citizen science observation site in their schoolyard. With a mix of 4th and 5th grade exuberance and the seriousness of adults they are taking on the mission of gathering basic data for a section of their school yard scientific study and research area.   These students are part of the Oregon Season Tracker 4-H classroom program that is regularly getting them outdoors for real world science. As the teacher explains, this is the first of many data gathering sessions as part of their yearlong commitment to the program. This real world data will support researchers to gain a better understanding of climate change across Oregon.

regon Season Tracker (OST) 4-H classrooms are a companion to the Oregon State University Extension Oregon Season Tracker adult citizen science program http://oregonseasontracker.forestry.oregonstate.edu/ . In the adult program, volunteers are gathering and reporting their observations of precipitation and plant seasonal changes in a statewide effort. Started in 2013 and targeting adults, it quickly became evident to everyone involved that the program had clear applications to outdoor hands-on “experiential” science learning for students.

The foundation of the OST program is based on a partnership between OSU Extension and HJ Andrews Experimental Forest located in Blue River, near the midpoint of the Cascade Mountain range https://andrewsforest.oregonstate.edu/ . The Andrews is a leading center for long term research, and a member of the National Science Foundation’s Long-Term Ecological Research (LTER) Program. The 16,000 acre research forest in the McKenzie river watershed in the Cascade Mountains was established in 1948, with paired watershed studies and several long-term monitoring programs initiated soon after. Today, it is jointly managed by the US Forest Service and OSU for research into forest and stream ecosystems, and the interactions among ecological dynamics, physical processes, and forest governance.

Part of the success of the Oregon Season Tracker program is that we have also collaborated with national programs, Community Collaborative Rain Hail and Snow Network (CoCoRaHS) https://www.cocorahs.org/ and National Phenology Network (NPN) Nature’s Notebook https://www.usanpn.org/natures_notebook, as well as our local partner. A key role of our national partners is their ability to collect, manage and store the data, making it available both to professional and citizen scientists. This national connection makes sure the data is available long-term and easily accessible locally as well as nationally and beyond. Both of our national partners have easy to use web based visualization tools that allow volunteers and students to easily look at and interpret data.   In the classroom this means not only are students helping ongoing professional research, they can also investigate or research their own science questions using the data of others. Partnering with these national database sites also allows OST to stretch our resources further, spending our time and energy supporting the volunteers and classrooms in our program.

Zero is important data when reading the rain gauge!

Back at the school, it is 8:30 am and a student team is checking and recording the level of precipitation for the last 24 hours. The rain gauge station is set up outside the school entrance and is clearly marked with a sign explaining what the students are doing. Parents and visitors can clearly see they are part of the Oregon Season Tracker 4-H program collecting precipitation and plant phenology data as citizen scientists. The sign calls attention to their efforts and gives the students a sense of pride in what they are doing.

Students use a program approved manual rain gauge that is standardized nationally. They become comfortable reading the gauge marked out in hundreds of an inch and how to conform to set data protocols. They learn not to round measurements for accuracy, to read using the bottom of the meniscus, and how to deal with an overflow event. All skills that have math applications for what they are doing. Depending on the grade of the students these skills are new or a refresher of what they already know, but important none the less.

Students learned the rain gauge skills at the beginning of the year in outdoor relay races using Super Soakers to simulate rainfall in their gauge. Teams vie to see who can get the most “rainfall” into their gauge. The casual observer might mistake this activity for recess, but they are having fun learning the needed math skills. By learning to read the manual gauge to .01 of an inch they are following the protocols set out by our national partner CoCoRaHS.

The daily precipitation observations are establishing a piece of the scientific process. As part of the team approach, the observations readings are verified before dumping out the day’s accumulation. Students begin to get a feel for what an inch of precipitation looks like, both as it falls from the sky and what it looks like in the gauge. The data collected is then passed on to another student team that hovers over the classroom computer, entering it in the national CoCoRaHS website. Data entered by 9:00 am is shared on an interactive map, for any visitor to the website to view.

The data submitted to the CoCoRaHS website is accessed and used by meteorologists, hydrologists, water managers, and researchers. It is also captured daily by the PRISM Climate Group, one of our local OSU partners. PRISM gathers climate observations from a wide range of monitoring networks (including CoCoRaHS), to develop short and long term weather models that are in turn used by still more groups and agencies reporting on and studying weather and climate.   This is an important thing for all our adult and student observers to realize: their data is real, it is important, and it gets used.

So for those students that are worried that their data will just get lost in the mountains of reports submitted every day, I’d like to share this experience. This past year, I worked with a teacher that received an urgent email from the National Weather Service within a short time after the Monday morning rainfall report was entered in the database. The Weather Service continuously monitors for extreme weather, and were checking on the accuracy of the morning report of over 2 inches of rain. Quick sleuthing found the students had made an error in submitting their data. Instead of making a multiday report for the weekend they had made a single day report. This was an eye opening experience for the students, not only to realize their data is being used but also that scientists are depending on them to be accurate.

Monitoring a rain gauge is an easy lesson to expand or extend into other topics. Students can be challenged to look for weather patterns by comparing their own station with others across your county, state, and even the nation. Alternatively, by graphing daily data or comparing the rainfall data against topographic maps. These types of observations can challenge students to see patterns and make connections. This leads to investigating essential questions such as: how do these weather and climate patterns play out across the state and how does this effect what and who lives in these locations?

Observing fruiting on a common snowberry shrub.

OST students are also tracking plant phenology or growth phases over the year. They will be reporting on leaf out, flowering, fruiting, and leaf drop. By pairing these plant change observations with the precipitation readings, researchers have a powerful tool in the study of climate and the role it plays in plant responses. The OST program has identified eight priority native plant species that we encourage using if possible. These priority plants 1) mirror plants studied at the Andrews Forest, 2) have a large footprint across the state, and 3) are easy to identify. By targeting this small group of priority plants, we add density to the data collected making it more useful for our research partners. Our research partners at the Andrew’s Forest have many long-term studies looking at phenology and climate. They not only look at plant phenology but intensively study the ecosystem connections with watersheds, insects and birds. OST phenology data collected by students and volunteers allow the researchers to apply their findings and connections on a larger statewide scale.

Back at school, we now shadow a High School class. Students in an Urban Farm manage and work in a small farm on the school grounds, growing market vegetables and managing a small flock of egg laying hens. As part of their Urban Farm, they have planted a native pollinator buffer strip surrounding their large market garden. In this pollinator garden, they have planted vine maple, snowberry and Pacific ninebark, several of the OST priority plants, which they are observing weekly. They started their strip by studying the needs of the plants looking at soils, sunlight, and water needs. They then matched appropriate plants with their site, found a source and planted their buffer strip. Adding native plants to their buffer helps to attract and sustain the native pollinators in their garden. These students carry a field journal out to the garden and collect phenology data weekly as one of the garden jobs.

Just like precipitation data, observing and reporting on plant phenology has a set of protocols that need to be followed to standardize the data, and ensure accuracy. OST and Nature’s Notebook (our national partner with the National Phenology Network) are looking for the timing of some distinct phenophases or plant lifecycle stages. The students concentrate on looking for leaf bud break, emerging leaves, flowers and buds, fruiting or seeds, and leaf drop. Nature’s Notebook has defined criteria for reporting each one of these stages.

We have found students as young as 3rd graders can be accurate and serious phenology scientists with a progression of training and understanding. It all starts with being a good observer, one of those important science skills. We have found one of the best tools to teach observation is to consistently use a field journal (e.g., field notebook, science journal, nature journal) when working outdoors. A field journal is a tool that helps to focus students and keep them on track, and to differentiate their outdoor learning time from free time or recess. A simple composition book works well, is inexpensive, and is sturdy enough to last through the seasons.

Start with a consistent expectation of what a field journal entry will include and help students to set this up before they go out in the field. Page prompts will help younger students focus on the task. At a minimum, all field journal entries should include the date, time, weather, and location. Depending on the focus of the day, have students include sketches, labels, and notes on colors. Have students include at least one “I wonder” question they would like to investigate and learn more about. Use the field journals as a tool to help students focus in on the plant they are observing for OST, but also encourage them to observe everything around them. This broader look is what leads students to make those ecological connections that just may spark their interest in science and lead to a lifelong study.

Phenology photo cards help with recording data.

As students get comfortable using a field journal we introduce phenology. Phenology is the study of nature’s seasonal changes, and a scientist who studies phenology is looking at the timing of those seasonal changes and the relationship to climate. Although OST focuses on plant phenology, the observational skills can apply to wildlife and insects, for example reproduction and migration. Phenology is an easy observable phenomena that can lead your science study and help meet Next Generation Science Standards http://www.nextgenscience.org/resources/phenomena .

We use a fun activity to introduce phenology and help students focus on what is happening outdoors in the natural world. Start by having students brainstorm in their field journal a list of all the things they can remember occurring outside during their birthday month. They can use plant cues, animal migrations, weather and light. For example,, “the earliest bud break has already happened, daffodils are blooming, the daylight hours become equal to the night hours, and the early bird migrants have arrived” (March). Once they have their list, pair them up with someone who does not already know their birthday. Then have them trade clues to see if they can guess each other’s birthday month. For younger students you may decide to help them with a class brainstorm and write the different nature clues on the board under headings for each month.

Once the student have a good understanding of the concept of phenology we go outside to start observing. OST has developed some handy plant phase field cards that have pictures and definitions for students to refer to and compare as we learn the phenophases in the field. Nature’s Notebook has printable data sheets that students can take out in the field to record their data. We have found that by copying these data sheets at the reduced size of 87%, they fit into the composition book field journal and can be glued in to create a long term record of data at the site.

Using technology to create an informational video.

Technology also plays a key role when doing citizen science with your students. Both Nature’s Notebook and CoCoRaHS have developed easy to use free apps. The versions work with both Apple and Android devices, so you could use them on phones and tablets as well as entering data online with classroom computers. We take it one-step further and use the tablets to document the student learning. Each student team works on creating an informational video of the project over the school year. We give them the option of creating a video to train other students or make a video to communicate their work back to our partner researchers at the Andrews Forest. This video becomes an assessment tool for teachers and is something that the students enjoy. We limit the videos to no more than a three minutes, which means they need to plan it out well. They spend some of the slower winter months creating a storyboard, writing scripts, filming and editing. A 5th grade teacher at Muddy Creek School said, “The iPads engaged my most distractible students. Also, everyone was vested in this project because of the fun the iPads bring to the table. Basically, iPads were a great motivation to learn the science.” For Apple products, you can download a free version of iMovie for creating and editing your final product. There are also free editing apps that can be used on Android devices. Here is one of our early attempts using a movie trailer format https://www.youtube.com/watch?v=1KdNPZp-1Fs

In exchange, “Researcher Mark” (Schulze) from the Andrews Forest is in a video we created for the students. Walking through the HJ Andrews Experimental Forest we visit one of the many phenology plots at the forest. Mark explains how the phenology plots are scattered across a gradient of elevations at the Andrews. This allows them to look at plant responses to weather and climate as well as delving much deeper, making connections to insects, birds, soils, drought and much, much more. Mark explains that he is gathering data on some of the very same species as the students, and looking for the same phenophases. He takes them on tour of one of the many meteorological stations at the Andrews to see the many different climate instrumentation and variables that they are studying. In the end, Mark shares how valuable their citizen science data is to the future study of climate.

So, what does the Andrews research community hope to get out of collaborating with OST citizen scientists? With the wealth of information they are amassing, they are also interested in seeing if the trends and patterns they are documenting on the Andrews hold true across the varied landscape of Oregon. There is no stream of funding that could finance this kind of massive scientific study except through tapping into the interest and help of volunteer citizen scientist including teachers and classrooms across Oregon. In this circular process of interactions between researchers and volunteers we hope to extend the conversations about climate science, and document the landscape level changes for the future.

It is easy to see how the students benefit, both by applying “real science” outdoors on a regular basis, and their career exploration as scientists. Teacher’s surveys report taking their students outdoors to work on science an additional 8 – 12 times per year because of this program. One Middle School science teacher says, “A great opportunity to get students collecting ‘real’ or authentic data. Given that the work is from a national source it also helped students take ownership of their project and feel its importance.” Students also learn and practice many of the NGSS standards and science practices working on and experiencing real world problems, not just reading about it in a text book.

Climate change is a real and sometimes overwhelming problem for many students, leaving them with a sense of helplessness. What impresses me the most with the students in the program is that they come away with a mindset of how they can have a positive impact in the field of climate science. When asked what they liked best about this program student surveys stressed that positive connection, “Helping scientists felt good.” “That I can make a difference.” “By helping researcher Mark, it was not just for fun it was real.” A good step in building the ecological thinkers and problem solvers we need for our future.

Jody Einerson is the OSU Extension 4-H Benton County and Oregon Season Tracker statewide coordinator.

 

NGSS and Active Learning

NGSS and Active Learning

Maria’s Eye: How do we empower it to engage and understand her world?

by Jim Martin
CLEARING writer and contributor

f I could imagine the best possible classroom in the world, it would be one in which each student is empowered to look out into the world, see something which catches her attention, then know what to do to find out about it. Students engaged, involved, invested, and empowered in their world. My mind’s eye expresses this dream as one of a salmon fry darting quickly into a thick growth of periphyton on a fist-sized cobble, as Maria’s eye turns up and the corner of her mouth sets its sails toward a smile. That, not checking off a cell in a table, is the moment of learning that we teach for. That tells us that all is going to work out; we’ll accomplish this unit, and be ready for the next; empowered to accomplish whatever comes down the road.

How do we recognize that moment, and what do we follow it up with? So far, all of the work on science standards hasn’t clarified an answer to that question. Go to the Next Generation Science Standards (NGSS) website (http://www.nextgenscience.org/) and look for teachers’ resources. And for teachers’ in-service opportunities. What do you find that is cognizant of how teaching and learning actually happen? That offers in-service training on using active learning to engage students in self-directed inquiry. Perhaps we need to work on this ourselves.

How did Maria’s eye get to the place where it turned into anticipation, and an incipient smile expressed a clear message that she was on the way to understanding? Something in her environment invited Maria to explore a concept, and her brain did the rest. Something her teacher anticipated and organized within her students’ work environment so they would engage it. Not a simple thing to do. It takes knowledge, time, confidence, and experience to do this well. And competent mentors. (For about twenty years, I did science inquiry workshops for teachers which began with a casual observation that I hoped would lead participants to notice something. Each time, to the very last I did, this is the moment I felt that this time, it wouldn’t work. Each time it did, and my experience was the thing I relied on the most to trust it would. Takes courage! And experience.)

When students engage the real world, the one outside the classroom, and discover questions embedded in what they find, that process turns on their brain, engages the prefrontal cortex (pfc), and real learning begins. When they do this in partnerships or groups, the medial pfc adds to that learning power by engaging the negotiation of meaning with its power derived from the social interactions involved in exploring, then recognizing a question. Quickly, the whole brain becomes actively involved, and new conceptual understandings are reinforced in long term memory. Can teachers learn to use this wonderful, built-in resource?

How can environmental educators help get them out here? How do we get departments of education (unwieldy bureaucracies) and legislators to recognize the need and support it. Perhaps we can pilot a project which first describes what teachers need in order to appreciate and understand how active learning works, and why. Then provides the in-service support teachers need to feel confident with the content they are teaching, and comfortable with all aspects of delivering content via active learning.

There are educators who routinely use active learning to deliver content – environmental educators. They teach in places which are interesting, and where students can initiate learnings with real-world, concrete objects. A good way to start a learning activity by engaging the brain, especially the pfc. A nice five-to-ten day summer workshop, followed by mentored field trips to nail down specific learnings. What might this pilot look like?

Some teachers are already delivering content via competent active learning. A large number of environmental educators are doing the same. What if we could gather a few of each for a few hours to discuss the idea of helping teachers become comfortable with active learning, and comfortable integrating and aligning their deliveries to their state’s content standards? There are large regional environmental education learning centers which have the infrastructure to support workshops. A collaboration between teachers, environmental educators, and environmental learning centers might have the capacity to deliver a pilot project. I like to think in terms of the long run, so add a comment that this would be a three-to-five year pilot in which initial participants would, where feasible, mentor new teachers each year, periodically review progress and tweak the project, and present their work and findings at annual teacher and environmental education conferences.

It doesn’t take many people to make positive change. I’ve learned over the decades that they simply have to start.

jimphoto3This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests, and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”

The Confluence Project (Idaho)

The Confluence Project (Idaho)

from the Fall 2016 Issue of CLEARING

Integrating Watershed Science in High School Classrooms:

The Confluence Project Approach

tcp-1

by Audrey Squires, Jyoti Jennewein, and Mary Engels, with Dr. Brant Miller and Dr. Karla Eitel, University of Idaho

It’s not just because I personally love snow and skiing and snowshoeing and all that. It’s not just because I love to teach science outdoors in the field. It’s not even just because I value connecting my students with real scientists every chance I get. It’s honestly not any one of these particular things alone that has made the Snow Science field trip the absolute favorite part of my Environmental Science curriculum over the last four years. Instead, it’s the simple notion that for this generation of teenager in the Inland Northwest, the impacts of climate change on the hydrology of snow within our watershed might be the most valuable social, economic, and ecological topic to cover in the entire school year. Snow is the backbone of our way of life in North Idaho, and the sense of awareness and empowerment my students develop as a result of this Confluence Project three-lesson unit is absolutely critical for their growth and progress as young adults heading into the 21st century. – The Confluence Project Teacher, Advanced Placement Environmental Science

 

C (Dakota)lean water matters, immensely, to all of us. We desperately need education that promotes deep understanding of how water is important to students. Fortunately, water as a theme is easily incorporated into numerous scientific disciplines. From the basics of the water cycle in foundational science courses to the complexities of cellular processes in advanced biology; and from energy forecasting with anticipated snow melt in economics to the nuances of water as a solute in chemistry, water is foundational to a variety of subjects and can be incorporated into the learning objectives with a little creativity and willingness to step outside the box.

Over the past three years in high schools across Northern Idaho we have been working to develop a water based curriculum that has the flexibility to be used in many types of classroom, and that provides students with firsthand experience with water and water related issues in their local watershed. The Confluence Project (TCP) connects high school students to their local watersheds through three field investigations that take place throughout an academic year. These field investigations are designed to integrate place-based educational experiences with science and engineering practices, and focus on three themes: (1) water quality, (2) water quantity, and (3) water use in local landscapes. During these field investigations, students actively collect water, snowpack, and soil data and learn to analyze and interpret these data to the ‘big picture’ of resource quality and availability in their communities.

Before each field investigation, students are exposed to the pertinent disciplinary core ideas in class (National Research Council [NRC], 2011; NGSS Lead States, 2013), explore issues present at field sites, read relevant scientific articles, and learn field data collection techniques. Students then collect data in the field with support from resource professionals. After each field investigation, students analyze their data and use the results to discuss how to solve ecological issues they may have encountered. Adults guide students through this process at the beginning, with the goal that students will develop the necessary skillset to conduct independent, community-based, water-centric research projects by the end of the academic year (Figure 1). Students are ultimately challenged to creatively communicate their research projects, including both the scientific results and their proposed solutions to environmental issues encountered in their watershed, at a regional youth research conference (e.g. Youth Water Summit).

Figure 1: The Confluence Project continuum through an academic year. Curriculum units are listed on the left and can be taught in any order. For each unit, students participate in a: pre-lesson, field investigation, and post-lesson. Students then complete individual or group research projects using the knowledge and skills built throughout the year. The culminating event, the Youth Water Summit, invites students from across the region to present the results of their independent research projects to an audience of community stakeholders, experts, and peers.

Originally created to serve as a sustainable method to continue outreach efforts from a National Science Foundation Graduate STEM Fellows in K-12 Education (GK-12) grant (Rittenburg et al., 2015), the development of TCP coincided with the release of the Next Generation Science Standards (NGSS) (NGSS Lead States, 2013). With a strong emphasis on science and engineering practices, disciplinary core ideas, and coherent progressions (Reiser, 2013), the TCP model closely aligns with these new standards. Given that much of the curriculum developed for the older National Science Education Standards is content-focused (NRC, 1996), TCP fits the need to create curriculum that includes opportunities for students to explain how and why phenomena occur and to develop the critical thinking skills associated with scientific investigations.

tcp-2Pedagogical Framework

Sobel (1996) wrote that “authentic environmental commitment emerges out of first hand experiences with real place on a small, manageable scale” (p. 39). In TCP, authentic learning often emerges as students engage in first-hand exploration. Using the local watershed as a lens for field investigations enables students to connect with their landscapes and develop new depths of understanding of the world around them. By connecting students’ lived experiences and local landscapes with scientific information we are able to generate a unique learning setting, which in turn sparks continued interest in exploring the familiar from a new perspective. As one student from the 2015-16 program wrote:

Before the several field trips that our class went on, I had no idea how many water related issue we had on our environment (sic). After being in the field and working with experts about this topic, I now know how to inform the public, how to test if the water is clean, and how to better our ecosystem for the future. Without this hands-on experience, I would still be oblivious to the issues around me.

 

This localized learning approach is often referred to as place-based education (PBE), which engages students in learning that utilizes the context of the local environment (Sobel, 1996; Smith, 2002). PBE seeks to connect students to local knowledge, wisdom, and traditions while providing an authentic context to engage students in meaningful learning within their everyday lives.

TCP also uses a project-based learning (PBL) approach (Bell, 2010) to help students frame the field investigations and the subsequent analysis and interpretation of collected data as foundations for their own research projects. These practices emphasize student construction of meaningful and usable scientific concepts and, perhaps more importantly, relating these concepts to their own lived experience. For example, one student wrote the following reflection after a class water quantity field investigation:

I learned that snow is a lot more complicated than I thought. Before, I had never heard the term “snowpack.” I learned about the different layers and how they vary and can have a great affect (sic) on our watershed. This new knowledge could help me be more aware of snow and now that I understand how it works, I can watch and see how my watershed will be affected that year by the amount of snowfall.

 

These types of reflections demonstrate an internalization of curriculum unit topics, which in turn motivates students to continue learning.

Importantly, PBE and PBL are used as frameworks to align lessons with the NGSS. The pedagogical features of PBL match well with the eight science and engineering practices at the core of the NGSS framework, which include: (1) asking questions and defining problems; (2) developing and using models; (3) planning and carrying out investigations; (4) analyzing and interpreting data; (5) using mathematics and computational thinking; (6) constructing explanations and designing solutions; (7) engaging in argument from evidence; and (8) obtaining, evaluating and communicating information (Bybee, 2011). In TCP, these pedagogical approaches provide a meaningful context for students to engage in developing understandings of disciplinary core ideas, while the curriculum creates new, effective ways to enact the NGSS.

Empirical evaluation of student learning in the program (Squires et al., under review) indicates that after participation in TCP, students expressed greater concern for local ecological issues, recognized the efficacy of science as a tool to address environmental issues in their communities, and were more engaged in science when PBE and PBL pedagogies were used.

Project Implementation

Cross-disciplinary curriculum.

Yesterday my entomology class went to a local creek to study the bugs and life around it. It was really cool to fish a lot of bugs out of the water. We got lots of benthic macroinvertebrates such as a mayfly (dragonfly), damselflies, all in different instars (sic) [stages of growth] …. We tested the pH of the water, the transparency of the water, and the dissolved oxygen in it…This was really a fun project, it was great getting all of the bugs I’ve been learning about and it was really cool to use my knowledge about them… I suggest that anyone should go and do this, you could learn a lot about your region’s water quality. –TCP Entomology Student

 

TCP curriculum aligns with several Performance Expectations and Disciplinary Core Ideas from the NGSS (Table 1), and can also easily adjust to fit within multiple courses. TCP curriculum has been incorporated into less flexible, standards-driven courses like Biology and Chemistry, as well as more flexible courses like Environmental Science, Entomology, and Earth Science. While each class participates in the same three units (water quality, water quantity, and water use), teachers tailor these units to the learning objectives of their courses.

For example, environmental science teachers have been able to tie the water quantity unit to global climate change, land and resource use, and local economics. Students analyzed collected snowpack data to determine how much water would be available in their watershed for growing crops and sustaining lake and river-based tourism economies. They also compared their data to historical figures to understand how climate change has impacted water availability in their watershed over the past several decades.

By contrast, TCP biology teachers have successfully incorporated TCP units as part of their yearlong curriculum aligned with rigorous biology standards. For example, as part of the water use unit one teacher discussed sustainable water use in an agriculture setting by focusing on concepts like plant growth and cellular function. Other teachers have presented photosynthesis, primary productivity, and fisheries biology during the water quality unit, and speciation, biodiversity, and habitat as core topics during the water quantity unit.

Even in very specialized science classes there is room to engage with this curriculum. For example, one entomology teacher was able to highlight the role of macroinvertebrates as indicators of stream health when teaching the water quality unit. He taught students insect characteristics, discussed growth and metamorphism, and then showed students how to tie flies in order to solidify that knowledge in a unique, hands-on way. The class then visited a stream near their school to identify macroinvertebrates and learn their importance in evaluating water quality. Last but not least, TCP curriculum was designed for the potential of cross-course collaboration, which gives students the opportunity to apply and link concepts and skills learned in science class to their other courses while developing critical thinking skills. Several program teachers have collaborated with colleagues in their schools to integrate content across disciplines and open students’ eyes to interdisciplinary study.

 

Table 1: NGSS Performance Expectations targeted by lessons within TCP Curriculum and their related Disciplinary Core Ideas (National Science Teachers Association [NSTA], 2013). See Supplemental Material for detailed lesson plans.

 

Performance Expectations Description Disciplinary Core Idea
EARTH AND SPACE SCIENCES HS-ESS2-2 Analyze geoscience data to make the claim that one change to Earth’s surface can create feedbacks that cause changes to other Earth systems. Earth Materials and Systems
HS-ESS2-5 Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. The Roles of Water in Earth’s Surface Processes
HS-ESS3-1 Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity. Natural Resources; Natural Hazards
HS-ESS3-4 Evaluate or refine a technological solution that reduces impacts of human activities on natural systems. Human Impacts on Earth Systems; Developing Possible Solutions
ENGINEERING DESIGN HS-ETS1-2 Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering. Optimizing the Design Solution
HS-ETS1-3 Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts. Developing Possible Solutions
LIFE SCIENCES HS-LS1-3 Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis. Structure and Function
HS-LS2-6 Evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem. Ecosystem Dynamics, Functioning, and Resilience
HS-LS4-5 Evaluate the evidence supporting claims that changes in environmental conditions may result in: (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species. Adaptation

 

Connecting with local professionals.

The most valuable thing that we learned on our field trip to [the restoration site] was learning about the processes that were taken to restore the creek, and why they did it… We think that this field trip has shaped our understanding of these careers by actually experiencing the job and their daily tasks that can do good to the environment (sic). Following the field trip, we can say that we have a better understanding of just how time consuming and difficult the process of restoration in an area such as [the restoration site] can be. –TCP student water quality field investigation post trip reflection

 

Teachers often struggle to plan activities beyond the day-to-day classroom lessons, which is one reason why local professionals and leaders are an essential facet of TCP. Agency scientists, Tribal land managers, and graduate students provide scientific support to teachers and students during field investigations, in-class pre- and post-lessons, and final research projects. This gives students an opportunity to collaborate with and learn from specialists and practicing scientists in their communities, allowing the students to gain experience carrying out science and engineering practices alongside experts. In addition, students learn about career opportunities and restoration efforts in their local watersheds from TCP partners. Examples of past TCP partners include universities (extension, graduate students, and professors); Tribes (environmental agencies and Elders); state agencies (environmental quality and fish and game); federal agencies (Natural Resources Conservation Service, United States Forest Service, Bureau of Land Management, and National Avalanche Center); and local organizations (environmental nonprofits, homeowner’s associations, and ski resorts).

 

Since these collaborations are critical to the success of TCP program we have developed a Reaching Out to Potential Partners checklist to help teachers contact and recruit community partners. The checklist helps teachers develop a coherent narrative to use with busy professionals which highlights the mutual benefits of collaboration.

Keeping costs to a minimum.

Admittedly, implementation requires some capital investment to cover essential program costs such as busing, substitute teachers, and field equipment. However, these costs can be minimized with some creative organization. Multiple TCP schools have been able to eliminate busing costs by using streams near or on school property. Supportive administrators can creatively minimize substitute teacher costs (in one case the principal agreed to cover the class instead). Field equipment is certainly necessary to collect data (see Resources), but the equipment required may potentially be borrowed from agencies or university partners. A classroom supply budget or a small grant from the booster club or other local organization can also help cover such costs and build supplies over several academic years. While regional youth research conferences, such as the Youth Water Summit are excellent ways to motivate students, it is possible to get the research benefits without the associated costs. We suggest inviting partners and other local experts to attend research project presentations at school. This way students can still benefit from external feedback as well as gain research and presentation skills.

Conclusion

TCP has provided a valuable framework for school-wide exploration of local water-related issues. TCP provides hands-on, place-based and problem-based learning while addressing key Next Generation Science Standards and preparing students for the kind of inter-disciplinary problem solving that will be increasingly necessary to address the complex challenges being our students will face as they become the workforce and citizens of the future.

Resources

The full TCP curriculum including lessons, standard alignment, field trip planning, and other recommendations can be found at: http://bit.ly/2cNdNIm

Interested in learning more from the TCP’s leadership team? Contact us at theconfluenceproject@uidaho.edu

Acknowledgements

A program like this requires dedicated and creative teacher and program partners. Without the enthusiastic commitment of our past and present teachers and partners TCP would never have been actualized. We’d like to thank Rusti Kreider, Jamie Esler, Cindy Rust, Kat Hall, Laura Laumatia, Jim Ekins, and Marie Pengilly for their aid in program design and implementation, as well as for continued programmatic effort and support. Furthermore, thank you to Matt Pollard, Jen Pollard, and Robert Wolcott; along with graduate students Paris Edwards, Courtney Cooper, Meghan Foard, Karen Trebitz, Erik Walsh, and Sarah Olsen for your dedication to TCP implementation. In addition, we would like to acknowledge funding from the NSF GK-12 program grant #0841199 and an EPA Environmental Education grant #01J05401.           

Author Biographies

Audrey Squires, Jyoti Jennewein and Mary Engels are past program managers of TCP. Squires is currently the Restoration Projects Manager for Middle Fork Willamette Watershed Council while Jennewein and Engels are PhD students at the University of Idaho (UI). Dr. Brant Miller, UI science education faculty, was the Principal Investigator of the EPA grant that funded TCP in 2015-16. Dr. Karla Eitel is a faculty member and Director of Education at the McCall Outdoor Science School, a part of the UI College of Natural Resources.

References

Bell, S. (2010). Project-based learning for the 21st century: Skills for the future. The Clearing House, 83(2), 39-43.

Bybee, R. W. (2011). Scientific and engineering practices in K–12 classrooms: Understanding a framework for K–12 science education. The Science Teacher, 78 (9), 34–40.

NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: The National Academies Press.

National Research Council. (1996). National Science Education Standards. Washington, DC: National Academy Press.

National Research Council. (2011). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.

National Science Teachers Association (NSTA), 2013. Disciplinary Core Ideas in the Next Generation Science Standards (NGSS) Final Release. http://nstahosted.org/pdfs/ngss/20130509/matrixofdisciplinarycoreideasinngss-may2013.pdf Accessed 22 April 2016.

Reiser, B. J. (2013). What professional development strategies are needed for successful implementation of the Next Generation Science Standards? Paper presented at the Invitational Research Symposium on Science Assessment. Washington, DC.

Rittenburg, R.A., Miller, B.G., Rust, C., Kreider, R., Esler, J., Squires, A.L., Boylan, R.D. (2015). The community connection: Engaging students and community partners in project-based science. The Science Teacher, 82(1), 47-52.

Smith, G. A. (2002). Place-based education: Learning to be where we are. The Phi Delta Kappan, 83 (8), 84–594.

Sobel, D. (1996). Beyond ecophobia: Reclaiming the heart in nature education (No. 1). Orion Society.

Squires, A., Jennewein, J., Miller, B. G., Engels, M., Eitel, K. B. (under review). The Confluence Approach: Enacting Next Generation Science Standards to create scientifically literate citizens.

NGSS and Environmental Education

NGSS and Environmental Education

Use the Real World to Integrate Your Curriculum

In today’s test-driven schools, there’s little room for including the world outside the classroom in the curriculum, even though school is supposed to be based on the real world. And prepare us for it.

by Jim Martin
CLEARING Associate Editor

HawkThis year I watched good classroom programs which involved and invested students in the learning they were doing come to a halt for several weeks so they could prepare for the standards tests. This, during what is the best teaching time of the school year: January through March, when there are very few breaks in the schedule, and teachers can concentrate on the delivery of curricula. Somehow, we have to wake up, get back to our senses, and use this time for learning.

That said, students do need to go out into the world to learn. Let’s look at two possibilities, the first in a stream, the other in a school yard. We’ll do the stream first, since it is the kind of place we ought to be going to. Then the school yard, since it is often the only alternative we have.

There are many places where students can find a streambank to explore. Or a wooded area; an open meadow; some place where they can see and count the organisms who live there. Then learn about them. These are wonderful places for students to engage new content via Active Learning. There is one, a small stream, near where I live. Here’s a list of some of those who live there: Salmon fry (very small, recently hatched, eat copepods); Copepods (eat algae and organic debris); Amphipods (eat organic debris, algae); Mayflies (eat algae, organic debris); Caddisflies (eat organic debris, algae, mayflies); Organic debris (this is dead and decomposing organisms on the streambed); and Algae (plants found on the streambed and submerged rocks). This list of organisms and information about them is abbreviated, mostly out of necessity; this is a blog, not a book!

Why Employ Active Learning?

Active learning is the best way for humans to learn. It entails having a learner-generated reason to find out something, and access to the resources which will help them find out. Finding plants and animals in a riparian area always stimulates students, and easily leads to conceptual learnings. Providing their teacher is comfortable with this way to learn. This is because noticing something in the world outside your body that catches your interest can, if you’re allowed to follow up on noticing, engage your prefrontal cortex and the machinery it employs in critical thinking. That builds brains. We need to do it.

Let’s say you find a stream near your school which has been restored, and supports a small salmon population. Your class can make a round trip to it in 20 minutes, which leaves time to make observations each time they visit. When they make a visit, they’ll group to study macroinvertebrates on the bottom of the stream, algae on the stream bottom and rocks, and animals living in the water column who will fit into a small net. Next, they’ll organize themselves to learn to identify the organisms they’ve found, and find out what the animals eat. This is an opening to several NGSS standards: Let’s look at four, one each from K-3, 4-5, 6-8, and 9-12. (I haven’t started this yet, but it should be doable. It’s all LS.) So, while they’re gathering data to build a food web, they can also be embarking on an integrated curriculum about diversity, thermal tolerance, diet, a John Steinbeck novel; whatever is coming up.

For K-3, look at K-LS1-1: From Molecules to Organisms: Structures and Processes, in which students use observations to describe patterns of what plants and animals (including humans) need to survive. In this case, building the food web helps students answer the question of what do living things need to survive. That might also lead to learning how some organisms not having enough to eat might affect their food web.

For 4-5, try 5-LS2-1: Ecosystems: Interactions, Energy, and Dynamics, in which students develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. In this case, when one species becomes scarce in its ecosystem, then is lost, this affects the movement of matter in its food web. In doing this, it also affects species diversity. This might lead to learning more about diversity, how we determine it, and what it provides for the species in a food web.

For 6-8, try MS-LS2-4: Ecosystems: Interactions, Energy, and Dynamics, in which students construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. This might lead to learning more about how their food web reflects ecosystems, and some of the biotic interactions which affect them. Middle school students might also use their food webs to approach another NGSS standard, MS-LS2-5: Ecosystems: Interactions, Energy, and Dynamics, in which students evaluate competing design solutions for maintaining biodiversity and ecosystem services. Again, they learn how to assess biodiversity, and apply those learnings to their food web.

For 9-12, try HS-LS2-6: Ecosystems: Interactions, Energy, and Dynamics, in which students evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem. For instance, they can use their food web to learn about thermal tolerance, and how it might cause the loss of one or more species in their food web. Then they might even search the literature for current evidence that, as species move from one ecosystem to another due to the stressors involved in global warming, they are replaced by other species, more tolerant of the changed thermal regime.


Can you engage active learning?

All of these can be enhanced with lab and field activities. This is in addition to the learning each group of students engages. Because they’re learning about particulars they have engaged in a stream, these learnings will become part of a readily accessible conceptual schematum, rather than a smorgasbord of disconnected facts.

Pick one of these which doesn’t seem overpowering, look it up on the NGSS web site, and try it out. Read what the NGSS says about it, then think of what you understand of food webs, and see how you can put the two together. When you’ve done that, then see what area of science you will soon be teaching, and see how you can use the NGSS description plus what you know of your food web, to integrate all into a workable unit to teach.

While the NGSS documents don’t often refer to food webs, there are some references to them at the elementary, middle, and high school levels. You can just do a search for ‘food web’ to find them. I’ve used the labels and titles, and the descriptions from the NGSS site in this writing. But I’m uncomfortable with the bureaucratic way they describe a very vivacious, dynamic, interesting system. A food web is one place where much science can be effectively addressed. Then, instead of learning facts about systems, students develop conceptual schemata which tie many areas of science together in meaningful concepts, ideas of how the world works.

We’ll use the organisms I found at the stream near my home for the next step; and that is to build a food web for this riparian area. As in all studies like this, the data collected will apply to just my reach, not the whole stream. To be more confident that my sample represents the stream, I’d have to sample more reaches. This collected information can then be used to construct food webs for that extended reach of the stream. Here’s one for the stream near where I live. (I had to look in side channels and slow waters near the stream’s edge to find the fry. Then, lacking time to complete the sampling, I looked up their diets on the web. I used this information to construct the food web in Figure 1.)

Martin51516fig1

Figure 1. A Riparian Food Web. Elements of the food web are organized by trophic level.

 

While I’ve named each organism just once, I’ve grouped larvae, both young and mature, in one place, even though they might show up within more than one trophic level if I have considered all of the stages in their lives. And for some, there are more than one species gathered under a name. Considering all species and their life stages would make a more complex, but more informative food web if done with more attention to these details. You can take this as far as your students can comprehend or stand. Complexity increases comprehension up to a point. Beyond that, learners are on overload, and their work isn’t effective. This information/concept overload point is different for each student. You can overcome these differences in capacity by parceling out the work according to each student’s capacity and instructional level. And interest!

You’ll find that active learning is evident in the negotiations within groups as they sort out the pieces of their food webs. As they learn more details about the organisms, their conceptual understandings grow exponentially. And their food webs become more complex, and more meaningful.

Now, we’ll go to a school yard to build a food web. It may not be a riparian area, but it is an area we can study nonetheless. (When I taught inmate students in the college program at the Oregon State Penitentiary, they were able to discover and report data on food webs found in the prison’s exercise yard, an ecosystem where there were no trees, shrubs, or streams. We, too, can do this, without going to prison.) Natural areas are the best to study, but as a workable alternative, you can do an effective study in your own school yard. For lots of us, this is a more workable alternative than field trips to a stream or forest. Take a look. What can you find? Jot down their names, or make names up. (As you learn their actual names, update your food web. This tactic works well with students.) Make an initial food web from your observations, then amplify this with information students research. (Food webs are easier to assess in fall and spring, when the organisms are there in greatest number. However, as compost piles remain warm in their interior, you can probably assess them any time. Be sure to cover them back up!)

Here is one I made up as an example. It’s based on what you might find in a compost pile in a corner of the school yard. If you’ve ever rummaged a compost pile, you’ll know that this is a much simpler food web than you’d find in most compost.

Martin51516fig2


Figure 2. A Schoolyard Food Web.

 

Food webs, by themselves, provide a visible platform for thinking about organisms and their ecosystems in a dynamic, conceptual way. Both species diversity and thermal tolerance can be effectively introduced via a food web. Thermal tolerance can affect diversity as species move from an ecosystem where temperatures have gone from within their thermal tolerance range to one which offers a better thermal regime. Diversity can attenuate the effects of thermal tolerance limits by reducing the effects of losing a food web species. The more diverse the population, the better the chance that other species will utilize the food sources that the departing species exploited. And might be exploited by the same consumer which consumed the species which departed. Like the visible, dynamic structure of a drawn food web, these two biological phenomena effectors of ecosystem stability live in a dynamic relationship with one another.

So, what will they do with their food webs? In the next two blogs, let’s look at diversity first, then thermal tolerance. Both will provide valuable insights into the effects of global warming on living things; which is something our students need to become experts in.

jimphoto3This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests, and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”

Jim Martin on NGSS

Jim Martin on NGSS

Active Learning:

Is this something our pre-service education equips us for?

I’m interested in the Resource section on the New Generation Science Standards (NGSS) web site (http://www.nextgenscience.org/resources). At the very end of the materials, there is a link to the Vision Framework table (http://www.nextgenscience.org/sites/ngss/files/15-041_Achieve_ScienceChartNewVision.pdf) which indicates where science education has been, and where it is expected to go: From teacher-centered/didactic to student-centered/constructivist, along with an emphasis on active learning. My experience and perennial hopes tell me that this is what should happen. In the long run, it will produce a better-educated electorate.

15-041_Achieve_ScienceChartNewVisionOne thing I don’t see is how this change will be effected. There is little evidence of funding to facilitate this movement from teacher-centered to student-centered deliveries, especially when so many science teachers haven’t made the move. And for good reason: a large fraction of teachers don’t have the college-level preparation this change entails. And, historically, this has been the case since I started tracking it in the early 1970s. There is some talk of states taking up this responsibility, but not many states seem willing to spend more on education. As in most education initiatives, it will be up to the teachers to bring themselves up to speed.

That said, my hope is to be able to take a science activity and walk it up the NGSS from K-12. This started with a simple food web, which we’ll continue to use with questions it raises to stray into other areas of the Life Sciences standards. I’ll try to use examples which can be applied at any grade level. I have no certainty that I can do that, but I’ll try.  Several possibilities for assisting teachers to make the transition to effective use of the NGSS in their classrooms are briefly described in the NGSS Resources section, such as the effort the Delaware and Rhode Island (http://www.nextgenscience.org/sites/ngss/files/DE-RI%20Collaborating%20for%20NGSS%20Alignment%20June%202015.pdf) collaborative effort to build effective ways to deliver the NGSS. Most efforts are still in the works, or pending work. The Delaware and Rhode Island effort’s final statement is instructive: “This work takes time: Participants’ knowledge of the NGSS, the rubric, and what makes for good feedback and suggestions for improvement grew over time, especially through the process of sharing their work with other members of their state team and across state teams.” Progress, but definitely not a final product.

next-genMany Classroom Sample Task plans described in the NGSS Resources section are “coming soon.” In one which is here now, Where Did the Water Go?: Watershed Study – Middle School Sample Classroom Task, the Introduction to the sample task describes what could become a student-centered activity, but the description of how to teach the lessons is largely teacher-centered. Overall, it doesn’t represent a student-directed inquiry, and provides little effective advice for teachers who are employing active learning for the first time. I suspect it will be up to individual teachers to reorganize the NGSS Resources offerings to make them student-centered inquiries. I’m concerned about this because teachers are under the gun to deliver on the NGSS, but are receiving precious little assistance to do so. And so we must train ourselves.

Let’s look at the wording in K-LS-1. Its performance expectation reads, “Use observations to describe patterns of what plants and animals (including humans) need to survive.” This is further clarified: “Clarification Statement: Examples of patterns could include that animals need to take in food but plants do not; the different kinds of food needed by different types of animals; the requirement of plants to have light; and, that all living things need water.” Then, elements from the Framework for K-12 Science Education are listed: “Analyzing and Interpreting Data – Analyzing data in K–2 builds on prior experiences and progresses to collecting, recording, and sharing observations. Use observations (firsthand or from media) to describe patterns in the natural world in order to answer scientific questions. Connections to Nature of Science: Scientific Knowledge is Based on Empirical Evidence – Scientists look for patterns and order when making observations about the world. LS1.C: Organization for Matter and Energy Flow in Organisms: All animals need food in order to live and grow. They obtain their food from plants or from other animals. Plants need water and light to live and grow. Patterns: Patterns in the natural and human designed world can be observed and used as evidence.” Lots of jargon, but it does contain useful information. We can draw on these elements to integrate what we observe in the real world with the semantic world of the NGSS. If we succeed, our students will be learning for conceptual understanding rather than to connect particular standardized test question stems with memorized, but not conceptualized, facts. We need to be able to do this.

We started to use a food chain to begin to address this standard. If we were to use the delivery modalities described in the first row of the Vision of the Framework table at the end of the NGSS Resources web page we would have two choices. One is teacher-centered, “Rote memorization of facts and terminology.” The other is student-centered, “Facts and terminology learned as needed while developing explanations and designing solutions supported by evidence-based arguments and reasoning.” That’s a rather densely concept-populated sentence; a sentence with a top-heavy concept load. (Concept Load is one of the things we all need to be careful about when we’re speaking or writing. It’s certainly a common problem for me.) In spite of that, it does open the door to teachers who allow their students to develop their own questions from time-to-time, and to develop investigations to answer them, collect and analyze data, interpret their findings, and communicate them. (You’ll notice my problem with concept load in that sentence.) In the process, students’ own questions and investigations force them into the books and the web to find needed information. Because they’re not going after it to answer a test question, it will be stored in conceptual memory, where it can be brought out to use when needed. That kind of work fits what the NGSS states it wants students to do. That opens the door to real, competent learning. We need that.

Your best way to master this new way of teaching is to take one piece and work on a way to deliver it via active learning. We’ll give that a first shot here. If we were to deliver the personal food chain activity described in the previous blog with a teacher-centered activity, we would provide students with the names of the plants, and where to place them on paper. Then we’d have the students write their own names above the plants and animals they ate, and draw arrows from each plant or animal to the student’s name. (We might ask them to write the animal names above the plant names and below their own names.) We’d then tell them they’d constructed a food chain, and begin to explain the arrows’ meaning. Whatever else we wanted them to know would be delivered in a similar way. Very little conceptual understandings would connect all of this information in a meaningful way or pattern.

“Pattern” is the operative word here. When we discover patterns, our brain’s Seeking system is activated, and the prefrontal cortex organizes itself to place all of these learnings within a connected conceptual schematum, which draws on information stored in various parts of the brain. The conceptual memory then ‘makes sense.’ Contrast this with memories created during teacher-centered activities, where memories are stored, but with precious few connections; little chance of developing into conceptual memories.

Now, to the right side of the Vision of the Framework table. Each of us teaches differently. I’ll describe this constructivist, active learning activity as I might do it. Think about it in your own way. That’s important. The differences may raise useful questions. Here we go. First, I assigned the homework task, “Tomorrow, write down all of the things you eat for breakfast. We’ll use this to look at one of the ways you’re connected to the world.” This will raise questions in some students’ minds. When a few of those articulate their questions, I’ll phrase in some way my standard response, “What do you think?” If the discussion seems fruitful, we’ll just see where it goes. If not, we’ll continue with what follows.

When they come in with their information the following day, I’ll ask them to work in partnerships to figure out a way to picture a relationship between the things they eat and themselves. After, we’ll report back what we find, discuss what we see and think, and then each group will build a picture to illustrate how they understand the relationship between the organisms they eat and themselves based on what they’ve taken away from the reporting session. That is as long as a fruitful discussion the day before didn’t lead to a better way to do this. Note: I’m talking about kindergarten or, K-1, since that is the level the standard quoted above is directed toward. But this activity does work at all levels with a little tweaking. The idea here is to prepare students’ minds for the learning about food webs that they will embark upon; and, to begin working on the NGSS LS1-1 standard.

We’ll post their pictures, then if I think it’s helpful, I’ll show them the way I did mine. Hopefully, I won’t have to. Since these are young children, I’ll simply say this is the way I thought of to do it. Then I’ll ask if their pictures provide any information about what plants and animals need to survive. This conversation can go many ways. My job will be to see that we learn that we all, even plants, need to eat. (Note: The NGSS K-LS-2 states that plants don’t need to take in food. I disagree with this assertion. Plants take in nutrients from the soil; that’s one of the reasons we compost and fertilize. Plant roots aren’t there just to absorb water and stabilize the plant. Roots work on their own and with microbes and fungi to bring nutrients in the soil into their own bodies. That’s taking in food, which the NGSS standard says plants do not. Oh, well.)

It is more difficult to write a set of standard directions for an activity delivered via active learning than via teacher-centered learning. Active learning allows so much room for minds to explore that it seems to have no direct path to the end. It actually doesn’t work that way, but you have to engage it yourself to discover that. There are little or no standard terminology or conceptual referents that we can use to describe active learning as there are for teacher-centered learning. Perhaps because it’s a relatively new function for most educators. Not for our brain. It learns best when it is seeking a pattern and/or answer to an interesting question. Helped us survive the Pleistocene. Somewhere along the way, school lost the capacity to use this powerful tool. We’re beginning to rediscover it.

In the next blog, we’ll look at the food chains the class produced, then see how we can use them to connect to other curricular areas.

jimphoto3This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests, and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”