Educating About Water

Educating About Water

Brightwater: An Opportunity for Connection


The treatment facility employs state-of-the-art technology for a cleaner effluent and odorless operation.

by Cynthia Thomashow

T3he Metro bus opens its doors, releasing 40 fourth-graders who have ridden an hour from South Seattle to the Brightwater Water Treatment Center in Woodinville, Washington. “We’re in the wilderness!” squeals one of the young boys. To his credit, the landscape is very different from his urban schoolyard. But, just 20 years ago Brightwater was an industrial site, housing an old soup factory and a scrap-metal heap. Now it is home to a state-of- the-art water treatment center, flourishing wetlands, a LEED Platinum environmental education center, and 40+ acres of woods and fields crisscrossed by trails and abundant wildlife.

In 2011, IslandWood, an environmental education center on Bainbridge Island, Washington, won the contract to provide educational programming at Brightwater in partnership with Seattle Public Utilities to a mostly urban population. The Center is a laboratory and gathering place filled with interpretive displays that creatively connect water quality, engineered waste treatment processes, and the health of the Puget Sound to everyday life choices. IslandWood educators use this site to deliver field-study approaches that enhance science curriculum in the King County schools. Woven into every lesson is relevance of the field-based learning to the home environment of the urban students.

Students enter BrightwaterCenterOver 4,000 students come through the doors of Brightwater each year to study Freshwater Ecosystems, Land Forms and Humans in the Water Cycle with IslandWood educators. Sparked by the question, “Which pond at Brightwater has more types of water bugs, Storm Pond (an untreated storm water runoff catchment) or Otter Pond (a pond fed by a stream originating in the watershed above the treatment plant)?” Students may spend half the day mucking through wetlands, climbing hilly fields, and dipping their nets into containment ponds to collect macro-invertebrates. Student make observations and predictions about freshwater ecosystems in the field, collect specimens, tabulate data using microscopes in the lab and discuss their results together.

Another key question, “What happens when we ‘borrow’ water from the water cycle in our homes, schools and businesses?” begins the study of how humans participate in the water cycle every time they turn on their tap, run the dishwasher or go to the bathroom. During the Humans and the Water Cycle program, students experience the treatment process first-hand, discuss water issues in an interactive exhibit hall, and participate in a hands-on lab focusing on three different water-related STEM careers.

An ongoing professional development challenge for staff is to connect the field experiences to the actual neighborhoods where students live. The goal of IslandWood’s Brightwater Team is to ‘urbanize’ their signature field-based approach of getting kids outdoors to the urban settings where students live. Once a month, staff delve into the assumptions that define our goals around environmental education, considering equity issues, environmental justice and cultural competency as it relates to educational approaches. Every time a new group of students arrives at Brightwater, a conceptual shift moves the educators closer to relevant and meaningful engagement with the young urban leaders of tomorrow’s world.


An installation by artist Jane Tsong illustrates the treatment process to visitors through poetry, and “blesses” the water before it is released.

(Photo credit: Juan Hernandez.)

Sustainability and Relationships: Learning from the STAR School

Sustainability and Relationships: Learning from the STAR School

DSC01149-1by Gregory A. Smith
Lewis & Clark College, Portland, Oregon

As news stories about global climate change, the peaking of oil production, or the threat of major water shortages appear more frequently in the mainstream press, it is not surprising that concerns about the long-term sustainability of institutions associated with industrial civilization have become common.  Although national and global organizations have been involved with this issue since the 1970s, only in the past decade has the general public begun to attend to the degree to which our economy and way of life are vulnerable to the impact of human behavior on the natural systems that support our species.  The term, sustainability, has become part of our daily language, and even though it is now employed to justify the efforts of transnational corporations as well as environmental organizations, its use points to a growing awareness that humanity can no longer ignore the environmental consequences of our activities and decisions. (more…)

Cool School Challenge – Students Take Action!

Cool School Challenge – Students Take Action!

The Cool School Challenge engages schools from all across the country in strategies to reduce CO2 emissions

CoolSchool-2by Katie Fleming, Rhonda Hunter & Kimberly Cline

Extreme weather events, rising sea levels, melting glaciers – oh my!  While climate change is an overwhelming issue, there is certainly hope, especially in the collective power of individual actions to reduce greenhouse gas emissions. That’s the underlying principle of the Cool School Challenge, an innovative climate education program that motivates students, teachers and school districts to reduce carbon dioxide (CO2) emissions school-wide. At the heart of the program is the philosophy that big changes start with small steps – and taken together, simple individual actions create a world of difference. Cumulatively, we CAN reduce our carbon footprint and it’s already happening! (more…)

Teaching Teachers in a Learning Garden: Two Metaphors

Teaching Teachers in a Learning Garden: Two Metaphors


by Veronica Gaylie
University of British Columbia


There are no larger fields than these, no worthier games than may here be played.grow wild according to thy nature…let the thunder rumble…take shelter under the cloud…Enjoy  the land, but own it not. (Henry David Thoreau, From Walden)

How does eco-centred teacher education promote ecological ideals while transforming the teacher training process? How can a campus garden engage student teachers in environmental philosophy while promoting new metaphors for eco-centred practice?

One response to these inquiries was to build a campus “Learning Garden,” a model school garden and learning site for student teachers. Through research, physical labour and collaborative learning, the garden grew as a narrative where students learned to become teachers with heart, and earth, in mind. The Learning Garden also exposed new teachers to a concept of the land as both a physical space and an experiential learning process, concepts involving responsible land management, risk taking and community commitment.

BoxBuildingA community learning model, with garden work at the core, promoted local and global knowledge of drought, food systems and farming practices; the model inspired students to want to acquire such knowledge and experience in the first place. The garden shifted learner awareness from personal achievement to the environment itself: from student stewardship of the garden to the impact of that stewardship beyond the garden and into the world. The garden challenged assumptions of ‘teacher success’ and also some of the ideals of environmental education. It was especially the challenges that helped realign ideals and exposed students to the unpredictable processes of both teaching and the natural world.

The critical challenges of teaching teachers in the garden can be described through two metaphors: garden as (physical) environment and garden as community. The garden as environment, a literal outdoor space, involved awareness of local climate conditions and the necessity for drought tolerant plants and native species. An awareness of the garden as environment also promoted concepts of ecological and social justice, with, for example, the decision to donate produce from the garden to the local food bank.  In the garden as community, student teachers learned the importance of respecting and interacting with their location; the learning garden was (and continues to be) strongly influenced by local Okanagan Tradition, which challenged a focus on individual achievement common to most academic programming. In this way, the garden, both as physical space and as a conceptual model, also challenged the roots of teacher training.

SchoolKidsSchool Gardens in the Context of Environmental Education

David Orr (2004) calls for the integration of environmental education across the curriculum, and a Science curriculum linked to history, environmental ethics, citizenship, Globalization and first hand awareness of how scientific knowledge affects the world outside the classroom. Such a curriculum supports the belief that “…knowledge carries with it the responsibility to see that it is well used in the world.” (13)

Other environmental writings (Bowers 2006, Shiva 2005) discuss the reclamation of public space as a way of developing socially engaged, knowledgeable communities.  Shiva discusses ‘living democracies’ that promote biodiversity, local action, and ‘reinventing citizens’ and provide a solution to monoculture and socio-economic injustice. (84)

Researchers also outline the need for practical and critical understandings in school gardens and the need to examine concepts such as direct food, globalization and anthropocentric learning models. Such a need can be realized through teacher education that supports critical, eco-centred concepts with first hand experience of land and food. The garden provides a place where students can consider, up close, the threats to local food sources through global agri-business, the commoditization of a basic life source (land and seeds), and various forms of embedded knowledge that contribute to ecological damage. As gardens grow in North American schools, teacher education must prepare future teachers in critical, eco-centred methods and philosophy while exposing  them to tangible, contextual awareness of the learning process itself.

Garden as Environment

Work in the garden began with an Environmental Education class made up of student teachers and practicing teachers. While we weeded, we considered some conceptual approaches to guide the garden: sustainability (passing on the garden to future learners); interdisciplinary learning (connected learning); hands-on learning (learning by doing); xeriscape as alternative to green lawns (responding to local water issues); organic (a contextual awareness of our surroundings as ecological systems); aboriginal traditions (community minded teaching and learning); rotating stewardship (respect for future groups in the garden).  The means of developing the garden’s principles were also meant to create a tradition of discussion that would be passed on to future groups, who could discuss, change, solve or adapt the founding principles.  The basic plan was for a food/drought tolerant/flower mix that would create a blend of “beauty” and “use” while showing how native, non-native and invasive species responded to drought. If the flowers and vegetables withered due to a water shortage, and the xeriscape plants lived, students would have a visual example of the effects of drought. The plan was not to create a showcase of local plant life but to support a learning process where mistakes could bring understanding. This would be a valuable, difficult lesson for new teachers.

The idea of a “Learning Garden” took hold and local businesses eagerly made donations.  The first donation was from a local lumber yard which donated one thousand dollars of red cedar for raised  garden beds, with promises of supplying more at wholesale prices. Other local businesses in the small community recognized that their own children, and family members, would benefit from school gardens.

With so much imported produce in local grocery stores, most of it hauled by truck North on one highway, the students considered the value of maintaining local farms as a means of challenging global food trade. What were the land ethics, the issues of eco-justice involved in building large scale, permanent condo developments on fertile agricultural? What was the connection between a local garden and globalized food ethics?  How could students involve themselves in this knowledge by learning and working in school gardens?

The students engaged in conversations around the larger context of their  local work, providing a practical context for their readings in Globalization from previous course work and personal interest.  While students thought of innovative ways to bring this knowledge to their own classrooms, the method of linking local and global concepts through hands-on learning would challenge teacher education focused on performance standards, organizational abilities and classroom management. By learning in the garden, and in considering the role of the garden in the local and global agricultural community, students began challenging their own teacher training.

PondThe Pond

The garden is located next to a pond filled with a variety of migratory ducks, red-winged blackbirds and other wildlife. One early idea was to use the pond to water the garden, using a pump.

What was the environmental impact of draining the pond? How did we interfere with goals for long term, sustainable land and water use by removing water from the pond? Why was our first impulse in moving toward sustainable land management to destroy it? What previous learning had lead us to seek short term gains, while destroying other life forms?  Leaving the pond alone seemed like an obvious, ecoliterate choice; however the process of coming to this decision was our first instance where a practical need lead directly to questions of environmental ethics. The shift from seeking solutions to asking questions about ecological justice began with contextual awareness, occurring organically within community, within the decision making process itself. Students learned that eco-centred decisions require a constant, conscious effort to weigh the ecological impact of human actions within an ethical framework of ecological justice.

A second example of contextualized decision making occurred when the students developed their garden design plans. The designs were placed on a screen in the classroom, and included a mix of hand-drawn symbols, squares, circles, combined with computer generated garden designs.  One design clearly stood out: it was irregularly shaped, with the exterior parameter of the garden bulging into and oddly shaped arc.  This design was in the actual, irregular shape of the land itself, with areas drawn for garden beds which lead out from a (natural, tree-shaded) classroom area to the composter and soil areas. The plan was organic, irregular, and fit the imperfectly shaped land perfectly. The students were beginning to work with the land by listening to the land itself.

PIC_0379Garden as Community

A community model of teaching and learning grows from school gardens. Instead of prizing ‘ownership’ of land or ideas, the learning garden was focused on an ideal of shared local knowledge. The new cohort of students typically wanted a quick, practical route to becoming teachers. Most of the students had recently completed four year undergraduate degrees in single teaching specialties; they were conditioned by an academic system of independent achievement and individualized recognition. Students emerged from academic undergraduate conditioning and most wanted to know instead of learn in a learning garden. When I told the students they would be developing curricula, methods and lesson plans around native plants, global education, local food and other eco-centred issues, a handful seemed interested.  One student told me: “I hate nature.”  During the second garden cohort, ideals for an eco-centred, community model of teacher education seemed at odds with a college system biased towards grades and individual stamina and success. In Spring, a dedicated group of the middle school cohort, post-practicum, continued building the infrastructure of the garden by building up the soil and designing the beds. We learned of a plan to drain the pond to make way for the new business/engineering building.  Our very presence seemed to challenge the land development that suddenly surrounded us on campus. When I told the students, they wondered how a campus that prides itself on ‘sustainability’ could consider removing a pond. The argument for removing the pond was that the pond was man-made, and therefore not ‘natural.’

The water issue found us taking personal responsibility for decisions  which would have a lasting impact. Our first lesson in making positive, conscious decisions for the garden, taught us the importance of listening to all members before making decisions. The land taught us to stay still. And listen.

The students and I were suddenly aware of the power structures that surrounded us. One student offered to live in a raft on the pond in order to save it from destruction.  At this time, we learned the challenges of building eco-centred community within previous, existing models of learning.  We experienced the growing pains of eco-centred teacher education; their academic, undergraduate education had not nurtured a collaborative learning model and, through eco-centred teacher education, the students and I learned, with some difficulty, how to build community from scratch.

What is the role of a teacher educator in guiding student teachers toward community based, eco-centred learning? Planning the garden, then planning and replanting the garden during the second teacher education cohort, brought forward the importance of process. Nurturing plants from seedlings, observing their growth, at the same time students and teachers learn from the garden, is a powerful way to help future teachers learn how to learn. Initial reluctance largely gave way when students worked together to apply their knowledge. I observed how problems resolve with the literal manifestation of abstract plans and knowledge. If, for example, a student wants to plant a rose, instead of native, drought-tolerant plants, a prolonged, decontextualized discussion could ensue in a classroom environment.  In the garden, however, it is obvious that a rose in our local climate requires a lot of water and care.  Is the student willing to provide that? Is a rose practical in a desert landscape? What are the cultural assumptions that lead the students to believe a rose is ‘beautiful’ if it uses one hundred percent more water than a local plant, such as an Oregon grape? For students new to a garden, learning does not lie in certainty, but in mistakes, and in defying preconditioned notions of learning.

BigGardenDuring the first year, threats to the garden community (physical, ethical, external, internal) all somehow related to concepts of individual ownership. In a western model of education, it seems that just as people care about land, they also want to control it.  The experience of the garden as a co-operative, shared model of learning made us aware of land models based on ownership and profit. Building the garden made visible the larger learning community, and prompted new understandings of the role of teacher education within that model. Is the role of a teacher educator simply to teach students how to exert control over all other natural species, including their students?  As Wendell Berry (2002) states, a community “…must change in response to its own changing needs and local circumstance, not in response to motives, powers, or fashions coming from elsewhere.” (163)  When learning supports peace, community, and environmental awareness, new values emerge that help learners make ecologically just decisions that challenge ingrained learning patterns. In this way, a garden challenges teacher education at its very roots.

“Hope Trumping Despair”

The story of the learning garden is about the impact of local, small scale actions on larger systems.  One school garden, with sometimes just a single teacher’s involvement, can produce far reaching effects.

Garden-based teacher education puts the ideals of environmental education into practice. Conceptualizing new forms of eco-centred teacher education also helps remove the myth of control and knowledge “ownership” for new teachers. It would be impossible for one person to build and maintain a school garden, and it would be purposeless, since land cultivation is always rooted in a process of shared knowledge. A school garden is always, simultaneously, environment and community.

BuildingStairsAs David Orr and others have stated, while it is vital to inform students of the scientific facts about environment, it is even more important to change the ways of living and thinking that have contributed to environmental destruction. Working in the garden teaches teachers to approach the land in the same way they might approach their students, taking a holistic, process-oriented approach. Such a community depends on individuals succeeding within and for the survival of the community; in working the land, students see how their efforts helped the land produce at a level that is sustainable, in context, with minimal impact on surroundings. In a garden, students are not silenced into discipline or disciplined into silence; the reasons for both talk and silence are apparent. Community becomes both the process and goal of learning. As taught in aboriginal Tradition, a garden teaches young people to also learn ‘how our actions are always tied to others, and how some actions disappoint and hurt.’ (Armstrong et al. 2000)

Beginning with visions and ideals about the land and learning, the students teachers and I grew alongside the garden: unpredictably, in the context of organic life. A garden reveals how the process of learning, rooted in the context of one’s surroundings, becomes the lesson itself. To learn in a garden with students is to be in a constant state of environmental and community activism. As veteran social activist Grace Lee Boggs states, a community garden is a sign of “hope trumping social despair” at the grass roots level where we ‘regain our humanity in practical ways.’

Veronica Gaylie, Assistant Professor in the Faculty of Education at the University of British Columbia Okanagan, has worked as a high school English teacher and is now a teacher educator in interdisciplinary, ecology-based learning. She is the founder of the learning garden at UBC Okanagan.

What were we thinking? (Putting on a watershed festival)

What were we thinking? (Putting on a watershed festival)


by Sharon Morse

It doesn’t look like much. A big dirt parking lot filled with boat trailers. Then the magic starts.

This is the tenth year for Tsalila (sa-Lee-la), the celebration of salmon and the Umpqua River in southern Oregon. Over 60,000 people have participated in this hands-on learning experience. Thinking about doing a large educational event in your area? Here’s how we have grown Tsalila.


How livable is your neighborhood?

How livable is your neighborhood?

Students Use Real World Data to Make ‘Green Maps’ of their Community

by Todd Burley
Homewaters Project, Seattle

“Green Mapping connected Cleveland’s students to their community by opening up their eyes to the environmental benefits and detriments around them. It gave the students a sense of ownership, pride, and responsibility. The culminating presentation at City Hall was the icing on the cake–students were able to share their voice with students from other schools and show what they found from their research.”
Amy Baeder, 10th Grade Teacher, Cleveland High School

How can we bring the titanic issues of community health – both environmental and social – down to a level that can be taught in the classroom?  How can we make pollution immediate, income disparity tangible, and historical landscape changes apparent to the average tenth grade student?  And how can we show the connections among all these issues including the students themselves?

Ten years ago, the seed of an answer to these questions germinated in New York’s Green Map System.  This nonprofit organization facilitates the creation of ‘green maps’ around the world that make visual the sustainable features – and problems – in a local community.  Green maps are locally created, but use an international set of icons as a shared language.