by editor | Feb 23, 2021 | Critical Thinking, Equity and Inclusion, Questioning strategies
Aldo Leopold famously wrote,”One of the penalties of an ecological education is that one lives alone in a world of wounds.” As environmental educators, we must ask ourselves what we are giving our students that equips them to deal with this harsh reality.
by Nick Engelfried (2017)
It hurts to love nature in the twenty-first century. Climate change, species extinctions, toxic forms of resource extraction like fracking, all will inevitably be encountered by our students in headlines and the evening news. Again and again, they will be confronted with news of harm being done to the world they have grown to love. What tools can we give students to defend themselves against despair and cynicism?
The solution, I believe, is for students to see environmental issues not as a serious of hopeless problems, but as a set of challenges with solutions they can take action to implement. By “taking action,” I don’t mean changing light bulbs, turning off the faucet, or reducing one’s meat consumption.
Making environmentally friendly lifestyle choices may provide a temporary sense of relief for some students. However, those who think critically about it will quickly realize that much larger forces than their individual footprints are at play in creating the climate crisis.
If we want to help students thrive in Leopold’s “world of wounds,” we must guide them far beyond the realm of personal consumption choices. We must help them see opportunities for collective, not just individual action. This is especially important for students of high school age and up, who are both developmentally ready to think about social change and increasingly likely to be exposed to environmental news as their awareness of the world around them expands.
I recently had the opportunity to experiment with teaching students about collective action and climate change, while co-leading a group of high school juniors and seniors on a 12-day backpacking trip for the North Cascades Institute (NCI) Youth Leadership Adventures program. NCI is a nonprofit that has been helping people connect with nature in and around the majestic mountains of North Cascades National Park for over three decades. NCI’s Youth Leadership Adventures program gets high school students out into the backcountry to learn about natural history, sustainability, and leadership.
In the lessons my two co-instructors and I taught while leading our students through North Cascades National Park, we made a point of emphasizing climate change solutions that involve collective organizing. The successes and challenges we encountered may, I hope, be useful to educators in similar positions who wish to help their students become effective agents of environmental change.
On the third day of the trip, one of my co-instructor colleagues led a lesson which introduced concepts like how the greenhouse effect works. We felt it was important to give students this grounding in basic climate science as a way to set the stage for future lessons.
Two days later, we introduced students to some specific impacts of climate change on people around the world. Another of my fellow instructors led a “Climate Change Mixer” activity taken from Bill Bigelow and Tim Swinehart’s excellent book, A People’s Curriculum for the Earth. Students participated in a role play in which they took on the roles of real people whose lives are affected by climate change or energy extraction. Afterwards, several students expressed surprise at the severity of climate change impacts on people like members of the Gwich’in nation in the Arctic, whose way of life is threatened by melting ice and the die-off of caribou.
Having acquainted students with the science of climate change and some of its effects, we were ready to talk about action. The day after the mixer activity, I led a lesson on social change designed to get students thinking about how they could have a positive influence on climate issues. I opened the lesson by introducing a concept none of the students had heard of before: theory of change.
A person’s theory of change is their mental conceptualization of how change occurs in society. If you believe the solution to environmental problems is for each of us, one by one, to decide to change our lightbulbs and reduce our meat intake, that’s your theory of change. This is also the theory promoted by many mainstream environmental education materials, which emphasize individual lifestyle changes above all else.
Another, equally problematic theory of change most high schoolers have encountered is that major societal changes are mostly triggered by charismatic individuals and “super-people,” who inspire the masses with exceptional acts of daring or wisdom. The way history is taught at the elementary and high school levels tends to reinforce this theory. Traditional historical narratives focus on charismatic leaders—the George Washingtons, Abraham Lincolns, and Martin Luther Kings—to the virtual exclusion of thousands of other ordinary people who contributed to making change happen.
To get students thinking critically about developing their own theory of change, I had us analyze one of the most famous accounts of personal bravery from US history: the Rosa Parks story. I asked a student volunteer to recount the story the way they’d learned it in school. The traditional narrative goes something like this: Rosa Parks, a seamstress in Montgomery, Alabama, decided one day that she would not put up with racist segregation laws any longer. She refused to give up her seat on a bus to a white man, and this act of personal bravery inspired the city-wide Montgomery Bus Boycott. This in turn gave rise to the Civil Rights Movement.
I next introduced some additional facts usually left out of the Rosa Parks story (these particular bits of background information were drawn from Paul Schmitz’s article for Huffington Post, “How Change Happens: The Real Story of Mrs. Rosa Parks and the Montgomery Bus Boycott”). They include:
• Rosa Parks had a long history of challenging segregation. In 1943, she was elected Secretary of the local NAACP chapter.
• Prior to her arrest, Parks had received training in nonviolent civil disobedience practices at the Highlander Folk School.
• When Parks was arrested in 1955, Alabama NAACP President E. D. Nixon was already searching for a good plaintiff to challenge segregation laws.
• Organizing the Montgomery Bus Boycott was a major undertaking involving many people. Jo Ann Robinson, a local leader in the Women’s Political Council, spearheaded an effort to print and post 15,000 fliers supporting the boycott.
None of these details diminishes the significance of Rosa Parks or the heroic nature of her actions. However, the picture they paint is quite different from the traditional Rosa Parks story. Rather than an act of individual bravery spontaneously triggering change, this more accurate narrative becomes one about a community of people coming together to challenge an unjust system.
It was now time to get students thinking about social change in an age of climate crisis. To do this, I introduced a role play centered around a current issue in Washington State: the controversy over a proposed new oil export terminal on the Columbia River in Vancouver, WA.
I first gave students some context. Tesoro-Savage, an oil infrastructure company, is seeking permits from the State of Washington to build the country’s largest oil export facility at the Port of Vancouver. If built, the terminal would further the world’s reliance on fossil fuels, and would be serviced by four oil trains per day passing through many towns and cities in the Columbia River Gorge. A train derailment in any of these communities could cause a disaster involving a massive explosion and thousands of gallons of spilled oil.
Given that most students in our group came from Washington or northern Oregon, the Vancouver oil export debate is unfolding in their backyards. Despite this, not one student had heard about the issue before I introduced it to them. This says something about the state of environmental education in our schools.
Having given students basic facts about the oil export proposal, I next introduced a fictional scenario set in a hypothetical community called Columbia Village. I asked students to imagine that Washington Governor Jay Inslee had given the oil project its final permit (in fact, Governor Inslee is expected to make a decision later this year). Oil trains would soon begin rolling through Columbia Village, which is situated in the Gorge along the rail line. For the role play, students would take on the personas of people from a variety of backgrounds meeting at the Columbia Village Community Hall to discuss a response to this environmental and public safety threat.
Unlike the roles assigned to students in the Climate Change Mixer, those I created for this activity were not based on real people. However, as someone who has attended dozens of meetings where members of a community came together to challenge fossil fuel projects, I carefully modeled each role around a different point of view that one frequently encounters at such gatherings. Specific characters included a mother concerned about dangers to her children, an activist advocating mass civil disobedience, and a member of the Yakama Tribe concerned about the oil project’s impact on fishing rights.
At this point in the lesson we took a break for dinner, and to let students familiarize themselves with their roles. I explained that students’ job at the community meeting would be to advocate for their character’s point of view about an acceptable course of action. Students would be allowed to “change their minds,” but only if they felt this was realistic and that the concerns of their character had been adequately addressed.
My hope for this activity was students would realize that many characters in the role play represented very different theories of change—and that their job at the meeting must be to reconcile these diverse points of view into a plan that could realistically achieve the desired result. I myself participated in the role play when we reconvened, acting as the meeting facilitator whose only goal was to ensure a consensus was reached without advocating any particular point of view.
The role play that unfolded over the next forty minutes or so at least partly satisfied my hopes for the activity. Unsurprisingly, one of the most contentious issues was that of using civil disobedience to confront the oil trains. One character in the role play advocated people blockading the oil trains with their bodies—and several others responded negatively to this idea, arguing that it was too dangerous. It was not unlike actual debates over civil disobedience, which I have listened to at many real-life meetings.
As an alternative to civil disobedience, another student suggested organizing a massive but legal protest near the rail line. I was surprised that the students seemed to think getting a permit for such an event would be a much longer and more arduous process than would probably really be the case. More predictably, many students were a bit naïve about how many people they could get to show up at a protest, envisioning a crowd of 100,000. The Dalles, one of the larger towns in the Columbia Gorge, has a population of only some 14,000, and most Gorge communities are much smaller.
Another character in the role play suggested everyone work on reducing their individual carbon footprints so as to make oil infrastructure irrelevant. I had added this point of view hoping it would force students to grapple with whether individual lifestyle changes are really enough. As it turned out, many students seemed genuinely torn about this. Some were understandably drawn to the idea that individual changes might inspire larger community-wide actions. Others pointed out that even if an entire town’s population switched to energy efficient light bulbs, this wouldn’t have much impact on global economic forces that made the oil export project viable. While students never addressed the lifestyle issue in quite the direct way I hoped they might, I felt satisfied they were coming to realize that individual changes are necessary but not sufficient.
In the end the students, through their role play characters, arrived at a consensus for a compromise course of action: to move forward with a march and a petition-gathering effort, while also embarking on a public education campaign to encourage sustainable lifestyles, and preserving the option of civil disobedience for those who wished to engage in it. In real life, such a wide-ranging, ambitious plan of action would probably seem unrealistic for a new community group’s first meeting. However, I feel this is far less important than the fact that students were able to recognize the value of different theories of change as well as some of their defects, and to come up with a plan not unlike the strategies some real climate activist organizations have developed.
After the social change lesson, I realized in my eagerness to get students thinking about collective action, I had neglected to fully bring the lesson back to students’ own experience and concrete actions they themselves could take. Fortunately there was time to rectify this. Later in the trip, one of my colleagues led an activity in which students made a pledge to themselves to take a climate-related action of their own choosing within the next year. Some students’ pledges centered around lifestyle changes like using less plastic or water. But I was pleased to note others chose collective actions like getting involved in activist groups or starting a climate-focused club at their schools.
The climate change lessons my colleagues and I taught during this 12-day trip represented an experiment in getting students to think about how environmental change actually happens. There are things I plan to do differently next time I teach a similar curriculum. At the beginning of the social change lesson, I wish I had spent more time illustrating the theory of change concept with specific examples. In designing the oil trains role play, I also could have done more to flesh out the characters assigned to each student, which perhaps would have led to deeper conversations about diverse perspectives.
These lessons learned aside, I feel the curriculum my colleagues and I devised for this backpacking trip successfully helped students take the first tentative steps toward envisioning how they might play a role in confronting climate chaos—and not just by participating in Meatless Mondays. I hope they came away with at least a few tools for fighting back against the sense of hopelessness despair that can come from living in a “world of wounds.” ❏
Bibliography
Bigelow, Bill and Tim Swineheart. A People’s Curriculum for the Earth. Milwaukee, WI: Rethinking Schools, 2014. 410 pages. ISBN number: 978-0-942961-57-7. The “Climate Change Mixer” activity described on pages 92-101 is referenced for this article.
Leopold, Aldo. A Sand County Almanac, With Essays on Conservation From Round River. New York, NY: Random House Publishing Group, 1970. Originally published by Oxford University Press in 1949 and 1953. 295 pages. ISBN number: 0-345-34505-3. The quote used in this article, “One of the penalties of an ecological education is that one lives alone in a world of wounds,” appears on page 197.
Schmitz, Paul (December 1, 2014). “How Change Happens: The Real Story of Mrs. Rosa Parks and the Montgomery Bus Boycott.” Huffington Post. Retrieve August 7, 2017, from http://www.huffingtonpost.com/paul-schmitz/how-change-happens-the-re_b_6237544.html. This piece was used as the main source for background information about the Rosa Story.
Nick Engelfried is an environmental educator and activist, currently working on his M.Ed. in Environmental Education through Western Washington University. As part of his work for the degree program, he is participating in a year-long residency working with the North Cascades Institute.
by editor | Sep 17, 2015 | Questioning strategies
What’s the Difference…
…between a single performer and an energetic band? Can students teach themselves?
by Jim Martin
CLEARING Master Teacher
n an earlier set of blogs, we followed a middle school class whose science teacher had started them on a project to study a creek that flows at the edge of the school ground. The last time we saw them, groups were analyzing and interpreting the data and observations they collected on their first major field trip to the creek, and preparing a report to the class. The blog focused in on the group doing macros, macroinvertebrate insect larvae, worms, etc., who live on the streambed; aquatic invertebrates large enough to distinguish with the unaided (except for glasses) eye.
They eventually organized themselves into three groups, one to cover the process of collecting the macros, one to describe how they identified and counted them, and a third to find out how to use their macro findings to estimate the health of the creek. Sounds like they’re on a learning curve, moving from Acquisition to Proficiency. They would need some feedback, both from withn the group and from their teacher. She gave each group one more task, to find out what they could about effective student work groups.
The macro group prepared the presentation they would make to the class. Each of their groups prepared their part, then they gave their presentations within the group, and used this experience to tweak them into a final, effective presentation. Their presentation included the interpretation they made based on their collected data that the creek’s current health was Fair, tending toward Good.
They used the rest of their prep time to begin a search for information on effective student work groups. During their web search, they were surprised there was so little there about middle school work groups, since they are finding their work invigorating, and feel they are learning a lot. Some of the sites they visited were confusing, some targeted high schools, but most described college work groups. Among those things related to effective work groups they found and were interested in were those which described the work, maintenance, and blocking roles individuals play within work groups, and those which described how groups can make their work visible while they’re processing by using whiteboards, posters, etc. They saw how these aids would help clarify concepts as they were learning. They decided to report on these two findings, roles group members play and making the work visible so that it is easier to discuss and process.
Of the two group characteristics they decided to report on, the idea that individuals play roles in a group, and these roles affect the work of the group were the most interesting to them, and a bit of a revelation. They were especially intrigued by one of the Blocking roles, which interfere with a group’s capacity to complete its work. The one they found most interesting was the Avoidance Behaver role. Each of them had engaged this role when they were madly fighting for the D-net while first collecting macros. (By joisting to control the D-net and collecting tray, they were avoiding the work in the way in which they behaved. They had employed Avoidance Behaviors; each of them, as they joisted, was an Avoidance Behaver.) They still laughed at the fun they had been having, but also felt the odd juxtaposition of this role with the Work and Maintenance roles they also played to move the work along, clarify the processes they used and identifications they made, keeping communication lines open, and sending out consensus queries about what they thought they were finding out.
They were encouraged that most of the roles they assumed were positive ones which lead to a successful project. As they talked, they also came to consensus that this was a finding of their work as important as their findings indicating that the health of the stream was Fair, tending toward Good. A revelation for them, and would become one for their teacher.
This group has made good progress on their new learning curves, macroinvertebrates and group roles. One curve is facilitating their conceptual understanding of macros; the other curve is empowering them to understand the dynamics of an effective work group. They entered these learning curves because (1) their teacher set them up in the first place, and (2) the Acquisition phase included finding out about macros. And, perhaps inadvertently, their, and their teacher’s discovery of the importance of developing effective work groups. Because the students were first finding macros, then learning about them, they started their work seeking information and patterns which would help them know who was living on the bottom of the creek. They didn’t consciously couch their investigation in these terms, but this is what they were experiencing.
The experience of seeing if they could actually capture macros, and the fun involved in collecting and seeing them stimulated the limbic’s Seeking system in their brains, which added dopamine to the neural soup that facilitates human efforts to make work interesting. These feelings and felt interests, in turn, drove them to the books and the web to follow up on the needs to know generated by their inquiries. Under their own power. First, the excitement of learning how best to capture macros, then residual interest carried them to the manuals to begin to identify who was there. ‘Finding Out’ is a powerful student (and human) motivator, one we stamp out as students move through the grades we teach. Perhaps because many of us don’t understand the content we teach well enough to allow our students to have their own thoughts about it. (Parenthetical comment on the 50%)
We could learn to use this motivator to engage conceptual learnings in ways that involve and invest our students in their learnings, and empower them as persons. There is a big difference between memorizing for a test and trying to find out the same information. The difference between a single performer and an energetic band. One way that difference expresses itself is in our standing in global scales of learning, where we are consistently near the bottom, rarely in the upper half. Our current model of school is memorizing for tests. How well does that work? We need to rediscover this active, group-centered, collaborative way of being human, and exploit it in our classrooms and outdoor sites. Telling students what is before them doesn’t stimulate long-term conceptual memory; helping them find out does. I’d like to say, “Freeing them to find out,” but for many teachers those words, especially the first one, might be intimidating to hear.
Building effective work groups takes time and patience. Fortunately, it goes quicker if the process takes place while the groups are pursuing an inquiry. Engaging in this kind of work develops needs for just the sort of group processes which make inquiries successful. While she may not have consciously planned it, dividing the class into groups, each with its own part of the creek to study, set the stage with students who were ready to learn about effective work groups. They weren’t consciously aware that they were ready, but their needs to do the work did the job for them.
(I’m interested in Jaak Panksepp’s work at Washington State University on the brain’s limbic system’s Seeking System. It’s important to learning for understanding because this is one of the few instances in which engaging the relatively primitive Limbic System leads to effective activity in the cortex, where critical thinking happens. When educators speak of the brain and learning in the same sentence, eyes in just about any audience tend to either roll or glaze over. Even though the brain is our organ of learning, teachers and administrators tend to think of learning and publishers’ products as the only bundle that matters. No room for neuronal bundles. Connecting. In effective ways. Evolved bottom up, and may work best that way.)
First, by sending students to find out, the emotions of the Seeking system move them to the cortex and critical thinking. Then we organize the learners’ environment so the information they (their cortices) need to know is readily available. And we can watch as our students learn for understanding. My experience was this: First engage students in their inquiries, then see how much of the reading I would have assigned or lectured on that they get into on their own. My observations on learners over the years told me that any movement away from total inertia on the part of the student indicates a determined effort to learn even if it’s a small move, say 10% of the way to mastery. Perusing the research on the brain eventually clarified that particular parts of the brain, when they were working, elicited the learning behaviors I observed, and clarified students’ involvement and investment in the learning, and empowerment as persons, and prepared them to form effective work groups.
So, the teacher and her class were learning that one thing which will enhance student performance is to learn how to get group members to interact. You can facilitate this by ensuring that students’ work calls for the communication skills it takes to develop consensual decisions about complex topics. The teacher whose students we just followed did this by asking each group to research information about effective student work groups. They do the work, she gleans the information. Win-win. A further step would be deciding how to include minority opinions in final reports. Simple to do; you just announce that you allow it. In my experience, this helps students achieve ownership of their learnings. A surprise for me was that sometimes students presenting a minority report saw something other groups presented from a new perspective, that of observer, not of learner. Whether that altered their interpretation of findings wasn’t as important as the fact that they were developing the capacity to hear another view and think about it. And validate the right to hold it. And, holders of the majority opinion often did review their thoughts.
The macro group is moving through its own learning curve. Does their progress look like a learning curve? Where did they start? Where are they now? How does the learning curve differ for an individual student vs. an effective work group? I picture this difference as one between a single, good performer, and an energetic band; the interactions between group members, while they’re working, can make a routine school activity become an exciting experience, a performance to be remembered. If you’re a teacher, listen to that last word.
This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests, and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”
by editor | May 27, 2015 | Critical Thinking, Learning Theory, Place-based Education, Questioning strategies
Photo by Jim Martin
“Lessons for Teaching in the Environment and Community” is a regular series that explores how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula.
Part 3: Emergent phenomena
by Jim Martin, CLEARING guest writer
If you go to a place in the world outside your classroom – your school yard, a trail nearby, a stream bank – and think about it, you’ll find it is a prism which, oriented effectively, holds the power to involve and invest your students in their educations, and empower them as persons. Simple miracle; takes work to discover.
You’ve found a place for your project, large or small, and thought of a partner or partners. Quite possibly, you might have noticed a piece of embedded curriculum. And maybe even thought of what students would do. These are the sort of things that emerge from the places in the real world when you go to them with your teacherly knowledge, skills, and understandings. The part of you that is Teacher is the prism from which the potential that resides in your community and environment emerge in observable form, paint their elements, disclose the human mind.
We named two projects last week. Let’s take a closer look at them and see what emerges.
A Small Project
Your class visits a nursing home every spring, and your students would like to grow flowering plants, pot them, and take them when they make their visit. You discuss this, and decide to plant seeds in the soil just under your classroom’s windows. When they’re growing well, students will transplant them to pots, which you have in your room.
What are the partnerships that will help you do this work? To do the project, you must get students out of the room and back, procure seeds and tools, touch bases with the custodian and principal, do the potting and manage kids on station. Plus, you have to deliver the fractions and biology lessons that you discovered in the schoolyard near your window. You have some resources, like the manager of a small local pharmacy, who has a limited budget for public services expenditures. Also, the nursing home and the school, which has gardening tools.
You need seeds, so ask the manager of the pharmacy outlet for a donation of one packet each of eight kinds of annual flowers. She agrees, and you get your seeds. So, children plant, seeds grow, students pot and then take their flowers to the nursing home. During the work, they learned about fractions and studied a biology unit on seeds. A resource you used is doing fractions and studying biology on site, so that you don’t do the project in addition to your already heavy teaching load.
Let’s call the people, institutions and organizations you worked with your “Partners,” and think of the project as one done with partnerships. Your Partnerships assist you with the logistical load involved in doing projects.
So, one tool you use is Partnerships, however small, to share the load. Sharing the load is an important part of doing projects. We live in communities, and ought to use them. It’s important to understand partnerships. Even though your partners are sponsoring part of the project, you are doing something for them and they are doing something for you. That’s why people engage in partnerships, because all parties bring something useful to the table.
A Larger Project
This project is a streambank restoration sponsored by a regional bird sanctuary and the local Friends of Trees organization. They provide tools, supplies, plants, and training for you and your students,. They also schedule three Americorps Volunteers for field trips and one classroom visit. You provide workers (your students), student-made site maps, site habitat assessments, and a summative Power Pointtm presentation.
The project entails a site visit to orient yourselves and begin site mapping, one to clear vegetation and continue mapping, another to survey, one to plant, and another to monitor the planting. In this sort of project, your partnerships are crucial to beginning and finishing the project. The bird sanctuary has some equipment and materials available to you for making the observations you’ll need to make the site map, and guidelines for performing the habitat assessments. They also have a person who will mentor you as you go through the stages of a streambank restoration project. This will give you the large picture within which your students’ work will fit. It also has, embedded within it, lots of useable curricula. Friends of Trees will help to plan and do vegetation clearing and using GIS techniques to map plants your students will put into the ground.
This means that you now must manage transportation, substitutes, and curriculum on your own. These present their own learning curves. The prism which organizes this confusing chatter of pieces, parts, jobs, and so forth, into recognizable and useful bands, bands which clarify community and environment based education into an inspiring and inviting rainbow is your capacity for doing self-directed science inquiry. In my experience, that seems to be the key empowering piece of the education puzzle. Most of us have never done a science inquiry from noticing something interesting, to asking a clear question about it, designing an investigation, collecting data, analyzing and interpreting it, communicating our findings, and identifying interesting follow-up questions. Somehow, engaging this from start to finish leaves teachers with a fresh perspective on what they are teaching, and how. And empowers them to thoroughly involve and invest their students in their educations and their lives. If you’ve ever seen the face and eyes of an empowered child, you’ll know what I mean.
Part of this change in perspective comes from releasing yourself from dependence upon directions in the publishers’ materials and teachers’ editions, and discovering that your students will find better, more effective ways to use them. Especially those in your bottom 25th percentile. (You can get an idea of what this might look like by going to Mike Weddle’s article here. He gives the most complete picture of what community and environment based education looks like that I’ve read. Written from the pen of a teacher. Jude Curtain, also on the website here, gives the best one-page description of science inquiry that I’ve read. They both know, and clearly express student-directed science inquiry.)
So, let’s walk through an inquiry, one blog at a time. The site can be your school, a natural area, a parking lot. They all work. Here’s what to do. If you can, spend some time in a place you’d like to do an inquiry. It doesn’t have to be one you’d take your students to. Browse around; find things that either interest you or raise questions in your mind. Just immerse yourself in the place. Here’s how one started for Dryas, my wife, and Carol Lindsay, our African Drum teacher, on a summer afternoon several years ago. We were by a side channel of a local stream, and they saw what they thought was a dragonfly with eight wings. They wondered what it really was, and set out to find out. This happens when you let something catch your eye. Go out this week and let it.
This is the third installment of “Teaching in the Environment,” a new, regular feature by CLEARING “master teacher” Jim Martin that will explore how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests, and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here.
by editor | May 27, 2015 | Critical Thinking, Place-based Education, Questioning strategies, Schoolyard Classroom
Photo courtesy of Jane Goodall Environmental Middle School
“Lessons for Teaching in the Environment and Community” is a regular series that explores how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula.
Part 2: Developing Capacity
by Jim Martin, CLEARING guest writer
“And then the whining schoolboy, with his satchel,
And shining morning face, creeping like a snail
Unwillingly to school.”
– William Shakespeare
Why creep, unwilling, to school? Could it be that school is, itself, unwilling? Unwilling to allow its students’ brains, wonderfully autonomous learning machines, the freedom to learn, to engage their world and discover its nature, become empowered within it?
We evolved to survive in wild environments by learning them. Our brain did this learning by finding and exploiting patterns in the world it encountered. In the end, our brain has developed into an autonomous learning machine. Students have demonstrated in many schools that engaging in inquiries in the places where we evolved causes them to become involved and invested in their educations, and empowered as persons. While significantly improving their scores on the current barometer, standards exams. Use this innate capacity we humans are born with to touch, think, learn, assimilate, to structure your curricula. Those who have are successful.
Here’s one I personally know: The faculty of the Jane Goodall Environmental Middle School (JGEMS) in Salem, OR, decided to build their curricula around experiences in the world outside the classroom. Each student’s journey is developmental, culminating in groups doing self-directed inquiry in various places: a farm in the country, a coastal estuary, the Oregon Zoo, a forest in the Coast Range. The school’s focus is not on preparing students for the state standards tests. Instead, they give their students a solid and empowering education. The last time I visited JGEMS, their students racked up an impressive record: 100% passed the science standards, and the reading and math standards in the high and middle 90s. (Check their school out yourself at www.jgems.net.) Students who begin their learnings in the world in which they will live out their lives become involved and invested in their educations. The education establishment doesn’t recognize this accomplishment of classroom and environmental educators, but it is real. And doable.
There are many places you can start the journey toward effective, empowering education. One is with what I call Developing Capacity. When you have the capacity to teach science as it should be taught, you can start a science unit with words like these where you describe a spider’s web, against the morning sun, with dew glistening on its surface;
This is what life is like: The cells which make living things are composed of molecules which have been selected and put into place by little pieces of sunlight. Together, when these cells are organized into the organisms in foodwebs, they sparkle, and receive more little pieces of sunlight. As long as the sun shines, its light will add sparkle to life, and, intoxicated, life will gather more sunlight. Once entrained, this is a self-perpetuating process. Let’s study it as such an enchanting, self-directing phenomenon.
Note the difference in opening a unit on plant and animal cell physiology this way vs. saying that, in this unit, we are going to learn about the processes of photosynthesis and respiration, and the structure and functions of enzymes in cellular processes. The difference between comprehending the content you teach and knowing you can adapt your teaching to foreseeable contingencies, vs. relying on the words and suggestions in the teacher’s edition for your understanding of the content and its delivery. Altogether too many science teachers in this nation rely on publishers’ materials to prepare them to teach their curricula. This is unacceptable, and we need to do something about it now.
What follows may make you feel a little uncomfortable, like being out on a limb, sawing on the tree side. If it does, and you continue anyway, you’ll make it. In spite of the fact that you’ll never quite lose that feeling of being out there with the scratching sound of the saw in your ear. By then you’ll know there is nothing to fear, and will be on your way to taking charge of your curriculum.
Pick a project. Make it simple, but at your instructional level. Here are two to give you an example of what I mean. The first is a small flower bed your students will put into place on the school grounds. The second is planting and restoration work along a local trail. Somewhere in the continuum between these two projects, you should find something that fits your instructional level. (You don’t necessarily have to do these, but you must walk and think through the steps of the project you envision. Generating part of your curriculum in the real world wasn’t covered in most of our teacher education courses. It’s a very learnable process, you simply need to experience it and reflect on it.)
My goal here is teachers who are empowered with the capacity to build partnerships to facilitate their real world curricula. If you’ve never done a project, then you’re in the Acquisition phase of this learning curve, and simply hooking up with a local planting project done by someone else is a good place to start. Keep in mind that, while your students are there to plant, you’re there to see how the project works, who’s a good person to keep in touch with, materials you’ll need to acquire, etc. In short – develop your teacherly antennae. They’re very helpful things to have.
The first step is to check out the place where you’ll actually do the work. Look at the actual site, find where you’d have students work, envision what they would discover. Think of one piece of the curriculum you will soon teach and find it there. Get to know the place as part of your classroom.
The second, after you see a clear picture of the project, is to begin to develop helpful partnerships. These you’ll need, especially if you’ve never done a project outside your school building. For the school planting, the principal, custodian, and another teacher make great partners. For the second, you can call the parks and recreation department, a local agency, or an environmental group. You can have your students help develop a list of people to contact. This can be empowering work for them.
This is your self-directed inquiry. So, decide on a project at your instructional level, check out the place where students will work, and identify at least one or two potential partners. Next week, the blog will pick up with these examples and use them to discuss the myriad things it takes to effectively use the real world to generate curricula.
I’ll leave you with one final charge: find a teacher who already uses the environment to build curricula. If you don’t know one, your school district probably knows of at least one. Tell the teacher your thoughts and keep in touch. It’s an easy way to reduce the isolation of the classroom.
Remember; this is all doable. You just have to start.
This is the second installment of “Teaching in the Environment,” a new, regular feature by CLEARING “master teacher” Jim Martin that will explore how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests, and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula.
by editor | May 26, 2015 | Questioning strategies, Teaching Science
Can I become a science inquiry facilitator? . . . If I’ve never been one?
by Jim Martin
What do I need to be competent in, comfortable with, being a facilitator instead of a top-down teacher? I think a first thing is the recognition that people can learn on their own; that they don’t need to hear me say every single thing that I want them to know. To be free to allow that, facilitators have to be comfortable with their understandings of the content they are delivering. And, they need to be comfortable developing effective work groups. Actually, I can think of a bazillion things, but these three are, so I currently believe, essential to making the transition.
If the Common Core State Standards (CCSS) and New Generation Science Standards (NGSS) are going to become more than simply another swing of the pendulum that arcs through the schools with predictive regularity, then teachers need to rally to support and develop those pieces of these initiatives which are directly targeted at the deficiencies in our teaching. Deficiencies which have landed us in a mediocre position in the educational statistics describing achievement on the globe. We’re the only ones who can do it.
Both the CCSS and NGSS initiatives profess to be based on a constructivist, active learning model of teaching and learning. This, to me, is wonderful news. Our brain is admirably organized to learn by actively constructing conceptual schemata, conceptual learnings. It does this best by asking questions of the real world. This means that teachers aren’t , of necessity, people who put learning into other people’s brains; rather, they are people who can organize their teaching environments to draw out the learning potential which resides in their students’ brains. They facilitate those brains to enter a conceptual space, engage and discuss what is there, and find out as much as they can about it. Like the little robotic vacuum cleaners, when, once their switch is turned on, clean up all the dust and litter in the room. All by themselves, with no one directing them. Once you turn on a brain, it doesn’t turn off. Unless it loses its freedom to work.
I’ve observed this dichotomy of teaching practices as long as I have taught, and been a student. Didactic, teacher-centered practices, and constructivist, student-centered practices: Is it a matter of personality, or of comfort with the content and methods being used to teach it? That makes a teacher prefer one or another? I’ve had (and observed) teachers who told me what to learn and how to learn it, then tested me on the results. Twice, in high school, I had teachers who threw out an idea, then sat back as I tried to find out more about it. I remember what I learned by finding out 60 years later. And the excitement of the learning. I carry no specific memories of learnings from the rest, except for things which personally interested me, like diagramming sentences. Which, odd it may seem, I loved to do.
The didactic teacher I had from fifth through eighth grades was the kind who told me what to learn and how to learn it all the way to the last days of eighth grade. Then, she started us on the way to pre-algebra by saying, “You don’t have to learn this. Just see if you can follow the argument.” Then, she wrote on the board the first algebraic expression I’d ever seen, a + 2 = 6. I looked at that for awhile and thought, “Wow! You can use letters to stand for anything! You could learn about anything with that!” A mind, at last free to explore.
For that brief moment, my stern, demanding teacher had become a facilitator. All by herself. That was 1952. Had her stern and demanding exterior reflected a lack of comfort with the content she was teaching and the methods used to deliver it; or, was her exterior reflecting the personality within? I can’t answer that question, but the obvious interest and enthusiasm she brought to the introduction to equations suggest she may not have actually been a stern and demanding person. It seems almost, from hindsight, relief to be free to teach as she thought she ought that I observed those very few days at the end of eighth grade. Today, more teachers have experienced being facilitators, but many have not. What would you need to become one? How can you find out?
At this point, I should leave you to find out; but, I’ll barge ahead with my own ideas, just as any didactic teacher would. Hoping all along that you’ll adopt a constructivist approach to the subject. That said, let’s start with my offering of three things a person who is a facilitator must have encountered and successfully engaged.
The first is probably the most difficult for a teacher to entertain – recognizing that people can learn on their own. When I first experienced this, I was in my first year teaching below college, in a 7th grade self-contained classroom. I didn’t know it at the time, but I had begun employing a constructivist teaching paradigm. It was hard, exciting work, yet I always felt the anxiety-producing peer pressure from colleagues whose view of school was students sitting in rows doing quiet seat work. Luckily, I had a very supportive principal, who encouraged what I was doing. And I applied what I had so far learned from raising my own children, that they do best when they are following up on choices they have made, which I had offered them, and which were within the limits I knew were workable.
So, what did I learn about using constructivist vehicles for delivering 7th grade curricula? About whether and how students can learn on their own? One, that this worked. At least, for me. They had two and a half hours each morning for language arts. During that tiem, they scheduled and worked on open-ended (but contained) writing and reading assignments. We also used speech and drama to engage active learning. (I didn’t know that’s what it is called; I simply knew it worked.) For instance, while working in groups to write and deliver one-act plays to elementary classes, they also learned the current language arts curriculum I had to deliver. Students became involved and invested in their work, and I noticed they also seemed empowered as persons. These were outcomes of the work; I wanted to know how this involvement and investment in their educations came to be. And that started my lengthy, often-interrupted journey into the human brain. A long stretch for me, with my background in intertidal marine invertebrate communities!
How would a constructivist science-inquiry delivery look in an actual classroom in two very different activities? The first is a microscope activity, where students observe for the stages of mitosis in plant cells. The second is a field activity, where students observe the effects of streamside vegetation on the temperature and dissolved oxygen content of the water adjacent to it.
When you employ a constructivist paradigm to organize the delivery of your curriculum, the students’ job is to construct the concepts you hope they’ll acquire by examining the pieces of the concept they are acquiring. Instead of you telling them the concept, they learn its essential parts by engaging them, and then use these parts to tell themselves the concept. A different way to teach; but effective. The first few attempts call for courage and confidence on the part of the teacher. And, in time, the patience to take the time to allow the learning to happen.
How does this play out? In the mitosis activity, you might start by projecting a slide of plant tissue containing cells whose chromosomes have been stained; the usual root cells most of us have observed. You have students pair up to do two things: Locate as many chromosomal configurations as they can and draw them. Or, if you know your students well, ask them to find out if there is any underlying order in the mish-mash of chromosomal configurations they see. This done, they are to organize their drawings in the order they think they occur during the progress of cell division. If you’re truly brave, you might ask them to find and draw other cellular evidence to support your placements. That done, they can present their findings, then go to the books and internet to find what other scientists have found about cell division. They will learn as much, or more, than you would have taught them. And moved further on the road to becoming life-long learners; explorers of the world they live in.
In the streamside activity, you ask each group to take a reach along the stream, then find out the effect of the vegetation on temperature and dissolved oxygen in the water along that reach. Nearly all students can do this. You can provide gentle hints about overhanging vegetation if necessary. The hard part of this work for you is locating a stream which has enough overhanging vegetation for the number of groups in your class. When they’ve collected the data, they find out what they can about temperature and dissolved oxygen, and relate that to what they observed. Next, they prepare presentations about their work, what their data tell them, and what next steps would be if they have discussed them in their groups. (Note that these are things the students and teacher do. To know what they think, we need to go into the brain.)
Eventually, with a constructivist approach to conceptual learnings, coupled with a didactic approach to things like safely lighting a bunsen burner or using a dissolved oxygen probe, I became convinced that this consistently led to solid learning. So, I slowly began to learn about the brain we carry with us, and the ways that it learns. What I found reinforced what I observed; validated it as a teaching paradigm based on real evidence. I had observed evidence over the years that students seeking answers to their own questions involved and invested them in their work; but that was just me, making observations and inferences. As I learned more about how the brain processes input from the world outside the body, I discovered that what I observed was real. Students get better and better at this. Probably quicker than you do. This relates to students as autonomous learners. Autonomous because they are pointing their needs to know, and following up on them.
The other two things a facilitator must engage, comfort with understandings of content, and comfort with developing effective work groups, are our responsibilities. Here is how I approached them. First, I recognized that they are, indeed, our responsibilities. Just as it was my responsibility to take college and graduate courses to fill the gaps in my understandings when I taught in college. Goes with the job. We’re teaching professionals, and that places the onus on us to do what is necessary to become comfortable with the content we teach. The only way to do that is to learn the content. We can take courses in it, work out an internship with someone who does the work, or teach ourselves. It’s an unfortunate fact of American education that we’ll be asked more than once in our careers to teach content we’re either marginally prepared to teach, or know next to nothing about. It will take all of us, working together, to resolve that.
When I finally decided to teach in K-12 schools, I knew nothing about teaching reading. I’d taken literature courses in college, but could only recall that we read, then discussed, then wrote papers. Not much help. I’d noticed in the few teacher education courses I’d taken that the most informative were the special education courses, so I enrolled in a course in corrective reading. It was taught by Colin Dunkeld, and delivered within a constructivist paradigm. (This was in the early 1970s!) I became comfortable enough to make my own decisions about teaching language arts. The corrective reading course was very hard and time-consuming work, but had a great payoff – confidence in content and comfort in delivery. That, and my life-long love of words helped me build a useful / effective / profitable / worthwhile7th grade language arts curriculum.
When you decided to do the mitosis and streamside vegetation activities, you marshallled together your understandings about those topics. You’d observed slides of dividing onion root-tip cells in a genetics course you took in college, and felt familiar enough with the process and observations that you would probably only have to review and practice to come up to speed in the mitosis activity. You’d also taken two botany courses because you’ve always loved plants, so felt you could understand the vegetation part of the overhanging vegetation activity. Temperature and dissolved oxygen in streams is new to you, so you decide to ask around about finding help. You contact the school district science specialist who recommends a field trip program which focuses on the riparian (streams and their banks) which includes water temperature and dissolved oxygen in its offerings. As a real bonus, the program includes measuring the effect of streamside vegetation on temperature and dissolved oxygen near the stream bank, and a field trip for you and your students. Offerings like the one described are fairly common! You do have to ask.
If your circumstances are different for your preparation to teach these two activities, how would you approach them? Leave your thoughts as a comment for others who will, you can be sure, be interested. Or, leave a question for me to answer!
Aside from knowing and teaching the learner inside each student who enters your door, your becoming comfortable with content and its delivery is something you cannot bypass. Its effect on your students is profound. Think of yourself as being assigned to perform as a heart surgeon, even though you’d never done it. Would you be satisfied knowing that, while you did have experience in knee surgery, you had none in heart surgery? Like surgeons, we directly affect the quality of our students’ lives, and must be certain we are delivering the best education possible. We can’t do that if we’re uncertain about our content understandings and delivery methodologies. Knowing is our responsibility.
If you know the learner who lives within your students, and are comfortable with the content you teach, then you’re ready to become comfortable developing and using what I call Effective Work Groups. These are small groups of students who know how to work together to accomplish tasks, and who can coalesce into larger groups to carry out projects. Humans are social beings, and can learn to work together effectively. Let’s look at the two examples of constructivist approaches to learning as they would appear from within an effective work group, or team. First, make the groups, then have each group discuss the work and decide how to organize it. After each session, they will discuss how it went, decide on any modifications, and then continue. When the work is completed, and it’s time to move on to more curriculum, they in their groups, then as a class, nail down what they know about effective work groups. (Be sure to call them that, and that they know this is a goal. Toward the end of the year, have them develop a description of effective work groups.)
Now, here is what one group has decided to do. Mitosis: Identify chromosomes; find different examples of chromosomes; each person will use a microscope because they all need to develop this skill; sort chromosomes out; declare the steps in mitosis; research what other scientists have found out about chromosomes; develop and critique their report; report to the class; assess their work. Communication is important here; one of the keys to becoming effective. You have them assess the role of communication in the effectiveness of their work after they have found and identified chromosomes, sorted them into a process, and have prepared their report to the class. They decide they’ll each observe their own slide, and will show others what they find and what they think it means. They assign tasks when they present. Streamside vegetation: They divide into temperature and dissolved oxygen teams; each team learns how to do the observation, then teaches the other group; then they divide the reach. After they arrive on site, they decide to assign a group of Mappers to map the vegetation. The group works on communication when they discuss data’s meaning, and divide jobs when they look up other scientists’ work on web and in books. You ask them to assess their roles in their group, and the outcome of their working together.
Active learning within a constructivist paradigm is effective, even at the college level. Many teachers engage it, but far from enough. It takes confidence in your students’ capacity for autonomous learning, and confidence in your capacity to do and facilitate this kind of work. And patience; lots of it. If you don’t believe students of almost any age can engage this paradigm, find a class of young students which uses it and observe them at work. When they are born, children possess wonderful potential. The environments they develop in determine, to a large extent, whether they will generate the capacity to achieve their potential. If their environment believes they cannot, more than likely they won’t. If their environment recognizes the learner within, they more than likely will. And feel this is normal.
This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests,and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”
by editor | Mar 26, 2015 | Questioning strategies
Is Science Communication? Can students, moving around and talking, do science?

by Jim Martin
CLEARING Associate Editor
You’re trying to answer a question. Student work groups have designed their own investigations to understand the question, develop inquiries to investigate what they have found and thought about, then present their findings to the other work groups in a symposium. There are many processes going on here. Let’s look at a few as they engage them to see what emerges in addition to discovering and testing possible answers to the original question.
Start small. In groups, you help students learn to communicate effectively. How to say, “Here’s what I think, and why;” and to listen and respond when other group members do the same. This is very basic to developing effective work groups. You have them keep notes on these conversations, and use them to elicit concepts, plan work, etc. (Basic, but essential. They need to know why they think what they do, and make what they think and why clear to others. And to learn to be advised or informed by others in their group.)
When your groups are communicating effectively, you observe for outcomes of their collaborative discussions. Do they understand their data, its patterns, its shape in graphs, etc. Are they showing signs of being able to relate data patterns to their question: Is it answered? What is the convincing evidence? What if the evidence doesn’t support their guesses about the answer to question? Or, does their question itself come into question? Are they becoming less mechanical and more purposeful in their work?
Further questions can move the groups along the learning curve by developing their critical thinking capacities: Are their interpretations of data supported by evidence? How confident are they of their data? Can they explain or justify data interpretations they have made, and their validity? What do their interpretations say about possible next steps?
You can continue to build on this conceptual foundation, each step easier because the foundation is becoming broad and more stable. You have them assess the design of their investigation and interpretations of data: How certain are they that they got the right data and used the best techniques of data acquisition? How certain are they that their data do, in fact, tell them what they need to know? Has their knowledge and expertise increased during this process? How much do they really know? Questions like these will tend to focus their thoughts on how they are learning and doing. Metacognition. Students who know how to learn know how to learn. Communication within effective work groups helps generate this capacity.
When they are ready, you have the groups report in a symposium. This is where their communication skills will be called upon to build conceptual understandings. How familiar are they with their evidence and its interpretation? How well do they comprehend other groups’ data and interpretations? How well do they generalize what they’ve learned and developed about collaborative communication within their work groups? Do they move it outward to carry on effective discussion with all of the work groups in the class? When an entire class develops the capacity to engage in substantive conversation about what they are learning, they’ll learn and nail down more than you could ever teach them using the publishers’ prepared materials and recommendations in the Teachers’ Editions.
Learning about science, but not doing science, does not develop the capacities described here. By only collecting and reporting data, students don’t engage the critical thinking capacities of their brain. I’ve observed science classes in which students looked up the boiling point of a liquid, say water, boiled the liquid and noted that it did boil at that temperature. What do they communicate amongst themselves? Is communication actually involved here? Or, are they simply engaging a perfunctory ritual? Might they have learned more if they had heated 3 or 4 liquids, noted their boiling points (or figured out how they’d know the boiling points, then test that), then looked up boiling points and made a guess about what their liquids were?)
Nor do they develop their capacity for conceptual learning when they simply learn about science, and commit science facts to memory. When students do engage in self-directed inquiries, examine the relevance of their collected data, critique it and the process of collecting it, and formulate interpretations they agree upon, they become involved and invested in the work, and empowered as persons. Engaging life. Engaged students are learning students. What our schools need today.
There’s not a lot of information out there on how to engage this part of teaching. There should be. This kind of work supports critical thinking, so it is of value. Critical thinking uses a part of the cortex that is especially well-organized for conceptual learning. That’s the prefrontal cortex, where relevant information from associative memories throughout the brain are brought together in working memory to nail down this new learning, then send it back out to associative memory; not as a fact to memorize for a test then forget, but as something more akin to common sense – something integrated into associative memory that you ‘just know.’
This critical thinking system turns on when you ask a question that is meaningful to you, and seek an answer to it. Science inquiry is a perfect complement and extension of this cortical learning system. In contrast, learning simply to prepare for a test won’t, of itself, entrain critical thinking. Instead, because of its aversive nature, learning content in order to answer test questions is accompanied by some level of anxiety, and entrains the limbic system, which isn’t good at engaging critical thinking. At least in this context, learning facilitated by anxiety about passing a test.
As the Common Core State Standards (CCSS) and Next Generation Science Standards (NGSS) continue to influence teachers’ and students’ experience in school, they present some level of anxiety to many, whether from an unfamiliar expectation for performance, change from structured, curriculum-directed teaching and learning to a more open-ended, active learning model, or from increased paperwork and accounting with no accommodating increase in free time for such work. Anxiety is processed through the limbic system, which impacts how the brain learns; which of its resources are freed for the task. As student and teacher stress levels increase, it becomes increasingly difficult to engage critical thinking. Instead, the limbic system, busy processing anxiety, increasingly limits communication with the prefrontal cortex, where critical thinking does its work. Instead, learning is limited to simple thoughts, which remain connected solely to the need to pass questions on a test, with little or no integration into associative memory, as occurs in critical thinking.
On the other hand, when students and teachers are free to explore new learnings (which the CCSS and NGSS seem to be interested in), to ask questions and seek answers to them, the limbic system supports this work with a heightened sense of pleasure and excitement, and feelings of well-being and inquisitiveness. And by assuring the doors to the prefrontal cortex are open.The different limbic involvements in learning are entrained by the properties of the learning environment. As they were when our brain evolved in the savannah during the Pleistocene. Might we use that history to revisit how we teach? How we organize student-student interactions while they learn? In the classroom and on-site in the natural world? In these cases, the limbic supports the work of the cortex, especially the prefrontal cortex, where working memory resides, and the brain’s conscious executive functions do their work. Work in which goals direct effort, reasoning and abstract thought are supported, and critical thinking takes place. Where we actively construct knowledge and commit it to long-term associative memory; ask questions, design investigations, develop needs-to-know which drive us into the information we seek, desire to complete and communicate our work.
When we are driven only by anxiety about not being able to answer questions on tests, this wonderful part of our brain is lost to us. The limbic system limits its use, and we simply memorize disconnected bits of information long enough to use them on a test, then forget. Are we teaching for fight or flight, or for higher-order critical thinking?
Used knowledgably, communication as practiced in doing science has the capacity to produce a foundation for critical thinking. By the information it generates, the testing of the information, and its processing and communication, it involves and invests students in critical thinking; in using their prefrontal cortex, its executive and working memory functions. The key feature is that the students, not the teacher, are involved in constructing knowledge. The teacher, while responsible for producing an environment where a constructivist approach to learning will probably happen, becomes a facilitator of their work. A difficult transition for many of us to make. I went into it willingly, but once committed, sorely missed lecturing and wowing students with the wondrous things I could show them in the lab. In spite of this, when I would pull out my old lesson plans, it would be immediately clear to me that this constructivist model was much, much more effective and empowering. And I eventually discovered this was because it used those sites and connections in the brain which were organized to engage conceptual learning. Something my pre-service and graduate education in teaching never addressed. It should have. Had it, and we learned as our brain is organized to learn, we just might have learned well.
Communication, when it is substantive, has the capacity to facilitate critical thinking. It does this by requiring us to consider what we are saying and doing, which is a readily useable road to the prefrontal cortex and working memory. Sort of like working in a shared workspace, a place with all the resources and facilities you need to focus on what you are learning, and the executive capacity to follow up on what you have learned.
This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests,and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”