On Teaching Science

On Teaching Science

identifying-samplesWhat’s the Difference…

…between a single performer and an energetic band? Can students teach themselves?

by Jim Martin
CLEARING Master Teacher

I-bluen an earlier set of blogs, we followed a middle school class whose science teacher had started them on a project to study a creek that flows at the edge of the school ground. The last time we saw them, groups were analyzing and interpreting the data and observations they collected on their first major field trip to the creek, and preparing a report to the class. The blog focused in on the group doing macros, macroinvertebrate insect larvae, worms, etc., who live on the streambed; aquatic invertebrates large enough to distinguish with the unaided (except for glasses) eye.

They eventually organized themselves into three groups, one to cover the process of collecting the macros, one to describe how they identified and counted them, and a third to find out how to use their macro findings to estimate the health of the creek. Sounds like they’re on a learning curve, moving from Acquisition to Proficiency. They would need some feedback, both from withn the group and from their teacher. She gave each group one more task, to find out what they could about effective student work groups.

The macro group prepared the presentation they would make to the class. Each of their groups prepared their part, then they gave their presentations within the group, and used this experience to tweak them into a final, effective presentation. Their presentation included the interpretation they made based on their collected data that the creek’s current health was Fair, tending toward Good.

They used the rest of their prep time to begin a search for information on effective student work groups. During their web search, they were surprised there was so little there about middle school work groups, since they are finding their work invigorating, and feel they are learning a lot. Some of the sites they visited were confusing, some targeted high schools, but most described college work groups. Among those things related to effective work groups they found and were interested in were those which described the work, maintenance, and blocking roles individuals play within work groups, and those which described how groups can make their work visible while they’re processing by using whiteboards, posters, etc. They saw how these aids would help clarify concepts as they were learning. They decided to report on these two findings, roles group members play and making the work visible so that it is easier to discuss and process.

Of the two group characteristics they decided to report on, the idea that individuals play roles in a group, and these roles affect the work of the group were the most interesting to them, and a bit of a revelation. They were especially intrigued by one of the Blocking roles, which interfere with a group’s capacity to complete its work. The one they found most interesting was the Avoidance Behaver role. Each of them had engaged this role when they were madly fighting for the D-net while first collecting macros. (By joisting to control the D-net and collecting tray, they were avoiding the work in the way in which they behaved. They had employed Avoidance Behaviors; each of them, as they joisted, was an Avoidance Behaver.) They still laughed at the fun they had been having, but also felt the odd juxtaposition of this role with the Work and Maintenance roles they also played to move the work along, clarify the processes they used and identifications they made, keeping communication lines open, and sending out consensus queries about what they thought they were finding out.

They were encouraged that most of the roles they assumed were positive ones which lead to a successful project. As they talked, they also came to consensus that this was a finding of their work as important as their findings indicating that the health of the stream was Fair, tending toward Good. A revelation for them, and would become one for their teacher.

This group has made good progress on their new learning curves, macroinvertebrates and group roles. One curve is facilitating their conceptual understanding of macros; the other curve is empowering them to understand the dynamics of an effective work group. They entered these learning curves because (1) their teacher set them up in the first place, and (2) the Acquisition phase included finding out about macros. And, perhaps inadvertently, their, and their teacher’s discovery of the importance of developing effective work groups. Because the students were first finding macros, then learning about them, they started their work seeking information and patterns which would help them know who was living on the bottom of the creek. They didn’t consciously couch their investigation in these terms, but this is what they were experiencing.

The experience of seeing if they could actually capture macros, and the fun involved in collecting and seeing them stimulated the limbic’s Seeking system in their brains, which added dopamine to the neural soup that facilitates human efforts to make work interesting. These feelings and felt interests, in turn, drove them to the books and the web to follow up on the needs to know generated by their inquiries. Under their own power. First, the excitement of learning how best to capture macros, then residual interest carried them to the manuals to begin to identify who was there. ‘Finding Out’ is a powerful student (and human) motivator, one we stamp out as students move through the grades we teach. Perhaps because many of us don’t understand the content we teach well enough to allow our students to have their own thoughts about it. (Parenthetical comment on the 50%)

We could learn to use this motivator to engage conceptual learnings in ways that involve and invest our students in their learnings, and empower them as persons. There is a big difference between memorizing for a test and trying to find out the same information. The difference between a single performer and an energetic band. One way that difference expresses itself is in our standing in global scales of learning, where we are consistently near the bottom, rarely in the upper half. Our current model of school is memorizing for tests. How well does that work? We need to rediscover this active, group-centered, collaborative way of being human, and exploit it in our classrooms and outdoor sites. Telling students what is before them doesn’t stimulate long-term conceptual memory; helping them find out does. I’d like to say, “Freeing them to find out,” but for many teachers those words, especially the first one, might be intimidating to hear.

Building effective work groups takes time and patience. Fortunately, it goes quicker if the process takes place while the groups are pursuing an inquiry. Engaging in this kind of work develops needs for just the sort of group processes which make inquiries successful. While she may not have consciously planned it, dividing the class into groups, each with its own part of the creek to study, set the stage with students who were ready to learn about effective work groups. They weren’t consciously aware that they were ready, but their needs to do the work did the job for them.

(I’m interested in Jaak Panksepp’s work at Washington State University on the brain’s limbic system’s Seeking System. It’s important to learning for understanding because this is one of the few instances in which engaging the relatively primitive Limbic System leads to effective activity in the cortex, where critical thinking happens. When educators speak of the brain and learning in the same sentence, eyes in just about any audience tend to either roll or glaze over. Even though the brain is our organ of learning, teachers and administrators tend to think of learning and publishers’ products as the only bundle that matters. No room for neuronal bundles. Connecting. In effective ways. Evolved bottom up, and may work best that way.)

First, by sending students to find out, the emotions of the Seeking system move them to the cortex and critical thinking. Then we organize the learners’ environment so the information they (their cortices) need to know is readily available. And we can watch as our students learn for understanding. My experience was this: First engage students in their inquiries, then see how much of the reading I would have assigned or lectured on that they get into on their own. My observations on learners over the years told me that any movement away from total inertia on the part of the student indicates a determined effort to learn even if it’s a small move, say 10% of the way to mastery. Perusing the research on the brain eventually clarified that particular parts of the brain, when they were working, elicited the learning behaviors I observed, and clarified students’ involvement and investment in the learning, and empowerment as persons, and prepared them to form effective work groups.

So, the teacher and her class were learning that one thing which will enhance student performance is to learn how to get group members to interact. You can facilitate this by ensuring that students’ work calls for the communication skills it takes to develop consensual decisions about complex topics. The teacher whose students we just followed did this by asking each group to research information about effective student work groups. They do the work, she gleans the information. Win-win. A further step would be deciding how to include minority opinions in final reports. Simple to do; you just announce that you allow it. In my experience, this helps students achieve ownership of their learnings. A surprise for me was that sometimes students presenting a minority report saw something other groups presented from a new perspective, that of observer, not of learner. Whether that altered their interpretation of findings wasn’t as important as the fact that they were developing the capacity to hear another view and think about it. And validate the right to hold it. And, holders of the majority opinion often did review their thoughts.

The macro group is moving through its own learning curve. Does their progress look like a learning curve? Where did they start? Where are they now? How does the learning curve differ for an individual student vs. an effective work group? I picture this difference as one between a single, good performer, and an energetic band; the interactions between group members, while they’re working, can make a routine school activity become an exciting experience, a performance to be remembered. If you’re a teacher, listen to that last word.

jimphoto3This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests, and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”

Teaching Science Inquiry

Teaching Science Inquiry

Can I become a science inquiry facilitator? . . . If I’ve never been one?

by Jim Martin

What do I need to be competent in, comfortable with, being a facilitator instead of a top-down teacher? I think a first thing is the recognition that people can learn on their own; that they don’t need to hear me say every single thing that I want them to know. To be free to allow that, facilitators have to be comfortable with their understandings of the content they are delivering. And, they need to be comfortable developing effective work groups. Actually, I can think of a bazillion things, but these three are, so I currently believe, essential to making the transition.

If the Common Core State Standards (CCSS) and New Generation Science Standards (NGSS) are going to become more than simply another swing of the pendulum that arcs through the schools with predictive regularity, then teachers need to rally to support and develop those pieces of these initiatives which are directly targeted at the deficiencies in our teaching. Deficiencies which have landed us in a mediocre position in the educational statistics describing achievement on the globe. We’re the only ones who can do it.

Both the CCSS and NGSS initiatives profess to be based on a constructivist, active learning model of teaching and learning. This, to me, is wonderful news. Our brain is admirably organized to learn by actively constructing conceptual schemata, conceptual learnings. It does this best by asking questions of the real world. This means that teachers aren’t , of necessity, people who put learning into other people’s brains; rather, they are people who can organize their teaching environments to draw out the learning potential which resides in their students’ brains. They facilitate those brains to enter a conceptual space, engage and discuss what is there, and find out as much as they can about it. Like the little robotic vacuum cleaners, when, once their switch is turned on, clean up all the dust and litter in the room. All by themselves, with no one directing them. Once you turn on a brain, it doesn’t turn off. Unless it loses its freedom to work.

I’ve observed this dichotomy of teaching practices as long as I have taught, and been a student. Didactic, teacher-centered practices, and constructivist, student-centered practices: Is it a matter of personality, or of comfort with the content and methods being used to teach it? That makes a teacher prefer one or another? I’ve had (and observed) teachers who told me what to learn and how to learn it, then tested me on the results. Twice, in high school, I had teachers who threw out an idea, then sat back as I tried to find out more about it. I remember what I learned by finding out 60 years later. And the excitement of the learning. I carry no specific memories of learnings from the rest, except for things which personally interested me, like diagramming sentences. Which, odd it may seem, I loved to do.

The didactic teacher I had from fifth through eighth grades was the kind who told me what to learn and how to learn it all the way to the last days of eighth grade. Then, she started us on the way to pre-algebra by saying, “You don’t have to learn this. Just see if you can follow the argument.” Then, she wrote on the board the first algebraic expression I’d ever seen, a + 2 = 6. I looked at that for awhile and thought, “Wow! You can use letters to stand for anything! You could learn about anything with that!” A mind, at last free to explore.

For that brief moment, my stern, demanding teacher had become a facilitator. All by herself. That was 1952. Had her stern and demanding exterior reflected a lack of comfort with the content she was teaching and the methods used to deliver it; or, was her exterior reflecting the personality within? I can’t answer that question, but the obvious interest and enthusiasm she brought to the introduction to equations suggest she may not have actually been a stern and demanding person. It seems almost, from hindsight, relief to be free to teach as she thought she ought that I observed those very few days at the end of eighth grade. Today, more teachers have experienced being facilitators, but many have not. What would you need to become one? How can you find out?

At this point, I should leave you to find out; but, I’ll barge ahead with my own ideas, just as any didactic teacher would. Hoping all along that you’ll adopt a constructivist approach to the subject. That said, let’s start with my offering of three things a person who is a facilitator must have encountered and successfully engaged.

The first is probably the most difficult for a teacher to entertain – recognizing that people can learn on their own. When I first experienced this, I was in my first year teaching below college, in a 7th grade self-contained classroom. I didn’t know it at the time, but I had begun employing a constructivist teaching paradigm. It was hard, exciting work, yet I always felt the anxiety-producing peer pressure from colleagues whose view of school was students sitting in rows doing quiet seat work. Luckily, I had a very supportive principal, who encouraged what I was doing. And I applied what I had so far learned from raising my own children, that they do best when they are following up on choices they have made, which I had offered them, and which were within the limits I knew were workable.

So, what did I learn about using constructivist vehicles for delivering 7th grade curricula? About whether and how students can learn on their own? One, that this worked. At least, for me. They had two and a half hours each morning for language arts. During that tiem, they scheduled and worked on open-ended (but contained) writing and reading assignments. We also used speech and drama to engage active learning. (I didn’t know that’s what it is called; I simply knew it worked.) For instance, while working in groups to write and deliver one-act plays to elementary classes, they also learned the current language arts curriculum I had to deliver. Students became involved and invested in their work, and I noticed they also seemed empowered as persons. These were outcomes of the work; I wanted to know how this involvement and investment in their educations came to be. And that started my lengthy, often-interrupted journey into the human brain. A long stretch for me, with my background in intertidal marine invertebrate communities!

How would a constructivist science-inquiry delivery look in an actual classroom in two very different activities? The first is a microscope activity, where students observe for the stages of mitosis in plant cells. The second is a field activity, where students observe the effects of streamside vegetation on the temperature and dissolved oxygen content of the water adjacent to it.

When you employ a constructivist paradigm to organize the delivery of your curriculum, the students’ job is to construct the concepts you hope they’ll acquire by examining the pieces of the concept they are acquiring. Instead of you telling them the concept, they learn its essential parts by engaging them, and then use these parts to tell themselves the concept. A different way to teach; but effective. The first few attempts call for courage and confidence on the part of the teacher. And, in time, the patience to take the time to allow the learning to happen.

How does this play out? In the mitosis activity, you might start by projecting a slide of plant tissue containing cells whose chromosomes have been stained; the usual root cells most of us have observed. You have students pair up to do two things: Locate as many chromosomal configurations as they can and draw them. Or, if you know your students well, ask them to find out if there is any underlying order in the mish-mash of chromosomal configurations they see. This done, they are to organize their drawings in the order they think they occur during the progress of cell division. If you’re truly brave, you might ask them to find and draw other cellular evidence to support your placements. That done, they can present their findings, then go to the books and internet to find what other scientists have found about cell division. They will learn as much, or more, than you would have taught them. And moved further on the road to becoming life-long learners; explorers of the world they live in.

In the streamside activity, you ask each group to take a reach along the stream, then find out the effect of the vegetation on temperature and dissolved oxygen in the water along that reach. Nearly all students can do this. You can provide gentle hints about overhanging vegetation if necessary. The hard part of this work for you is locating a stream which has enough overhanging vegetation for the number of groups in your class. When they’ve collected the data, they find out what they can about temperature and dissolved oxygen, and relate that to what they observed. Next, they prepare presentations about their work, what their data tell them, and what next steps would be if they have discussed them in their groups. (Note that these are things the students and teacher do. To know what they think, we need to go into the brain.)

Eventually, with a constructivist approach to conceptual learnings, coupled with a didactic approach to things like safely lighting a bunsen burner or using a dissolved oxygen probe, I became convinced that this consistently led to solid learning. So, I slowly began to learn about the brain we carry with us, and the ways that it learns. What I found reinforced what I observed; validated it as a teaching paradigm based on real evidence. I had observed evidence over the years that students seeking answers to their own questions involved and invested them in their work; but that was just me, making observations and inferences. As I learned more about how the brain processes input from the world outside the body, I discovered that what I observed was real. Students get better and better at this. Probably quicker than you do. This relates to students as autonomous learners. Autonomous because they are pointing their needs to know, and following up on them.

The other two things a facilitator must engage, comfort with understandings of content, and comfort with developing effective work groups, are our responsibilities. Here is how I approached them. First, I recognized that they are, indeed, our responsibilities. Just as it was my responsibility to take college and graduate courses to fill the gaps in my understandings when I taught in college. Goes with the job. We’re teaching professionals, and that places the onus on us to do what is necessary to become comfortable with the content we teach. The only way to do that is to learn the content. We can take courses in it, work out an internship with someone who does the work, or teach ourselves. It’s an unfortunate fact of American education that we’ll be asked more than once in our careers to teach content we’re either marginally prepared to teach, or know next to nothing about. It will take all of us, working together, to resolve that.

When I finally decided to teach in K-12 schools, I knew nothing about teaching reading. I’d taken literature courses in college, but could only recall that we read, then discussed, then wrote papers. Not much help. I’d noticed in the few teacher education courses I’d taken that the most informative were the special education courses, so I enrolled in a course in corrective reading. It was taught by Colin Dunkeld, and delivered within a constructivist paradigm. (This was in the early 1970s!) I became comfortable enough to make my own decisions about teaching language arts. The corrective reading course was very hard and time-consuming work, but had a great payoff – confidence in content and comfort in delivery. That, and my life-long love of words helped me build a useful / effective / profitable / worthwhile7th grade language arts curriculum.

When you decided to do the mitosis and streamside vegetation activities, you marshallled together your understandings about those topics. You’d observed slides of dividing onion root-tip cells in a genetics course you took in college, and felt familiar enough with the process and observations that you would probably only have to review and practice to come up to speed in the mitosis activity. You’d also taken two botany courses because you’ve always loved plants, so felt you could understand the vegetation part of the overhanging vegetation activity. Temperature and dissolved oxygen in streams is new to you, so you decide to ask around about finding help. You contact the school district science specialist who recommends a field trip program which focuses on the riparian (streams and their banks) which includes water temperature and dissolved oxygen in its offerings. As a real bonus, the program includes measuring the effect of streamside vegetation on temperature and dissolved oxygen near the stream bank, and a field trip for you and your students. Offerings like the one described are fairly common! You do have to ask.

If your circumstances are different for your preparation to teach these two activities, how would you approach them? Leave your thoughts as a comment for others who will, you can be sure, be interested. Or, leave a question for me to answer!

Aside from knowing and teaching the learner inside each student who enters your door, your becoming comfortable with content and its delivery is something you cannot bypass. Its effect on your students is profound. Think of yourself as being assigned to perform as a heart surgeon, even though you’d never done it. Would you be satisfied knowing that, while you did have experience in knee surgery, you had none in heart surgery? Like surgeons, we directly affect the quality of our students’ lives, and must be certain we are delivering the best education possible. We can’t do that if we’re uncertain about our content understandings and delivery methodologies. Knowing is our responsibility.

If you know the learner who lives within your students, and are comfortable with the content you teach, then you’re ready to become comfortable developing and using what I call Effective Work Groups. These are small groups of students who know how to work together to accomplish tasks, and who can coalesce into larger groups to carry out projects. Humans are social beings, and can learn to work together effectively. Let’s look at the two examples of constructivist approaches to learning as they would appear from within an effective work group, or team. First, make the groups, then have each group discuss the work and decide how to organize it. After each session, they will discuss how it went, decide on any modifications, and then continue. When the work is completed, and it’s time to move on to more curriculum, they in their groups, then as a class, nail down what they know about effective work groups. (Be sure to call them that, and that they know this is a goal. Toward the end of the year, have them develop a description of effective work groups.)

Now, here is what one group has decided to do. Mitosis: Identify chromosomes; find different examples of chromosomes; each person will use a microscope because they all need to develop this skill; sort chromosomes out; declare the steps in mitosis; research what other scientists have found out about chromosomes; develop and critique their report; report to the class; assess their work. Communication is important here; one of the keys to becoming effective. You have them assess the role of communication in the effectiveness of their work after they have found and identified chromosomes, sorted them into a process, and have prepared their report to the class. They decide they’ll each observe their own slide, and will show others what they find and what they think it means. They assign tasks when they present. Streamside vegetation: They divide into temperature and dissolved oxygen teams; each team learns how to do the observation, then teaches the other group; then they divide the reach. After they arrive on site, they decide to assign a group of Mappers to map the vegetation. The group works on communication when they discuss data’s meaning, and divide jobs when they look up other scientists’ work on web and in books. You ask them to assess their roles in their group, and the outcome of their working together.

Active learning within a constructivist paradigm is effective, even at the college level. Many teachers engage it, but far from enough. It takes confidence in your students’ capacity for autonomous learning, and confidence in your capacity to do and facilitate this kind of work. And patience; lots of it. If you don’t believe students of almost any age can engage this paradigm, find a class of young students which uses it and observe them at work. When they are born, children possess wonderful potential. The environments they develop in determine, to a large extent, whether they will generate the capacity to achieve their potential. If their environment believes they cannot, more than likely they won’t. If their environment recognizes the learner within, they more than likely will. And feel this is normal.

jimphoto3This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests,and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”

Jim Martin: Is Science Communication?

Jim Martin: Is Science Communication?

Is Science Communication? Can students, moving around and talking, do science?

Ocean Literacy & OCAMP
by Jim Martin
CLEARING Associate Editor

You’re trying to answer a question. Student work groups have designed their own investigations to understand the question, develop inquiries to investigate what they have found and thought about, then present their findings to the other work groups in a symposium. There are many processes going on here. Let’s look at a few as they engage them to see what emerges in addition to discovering and testing possible answers to the original question.

Start small. In groups, you help students learn to communicate effectively. How to say, “Here’s what I think, and why;” and to listen and respond when other group members do the same. This is very basic to developing effective work groups. You have them keep notes on these conversations, and use them to elicit concepts, plan work, etc. (Basic, but essential. They need to know why they think what they do, and make what they think and why clear to others. And to learn to be advised or informed by others in their group.)

When your groups are communicating effectively, you observe for outcomes of their collaborative discussions. Do they understand their data, its patterns, its shape in graphs, etc. Are they showing signs of being able to relate data patterns to their question: Is it answered? What is the convincing evidence? What if the evidence doesn’t support their guesses about the answer to question? Or, does their question itself come into question? Are they becoming less mechanical and more purposeful in their work?

Further questions can move the groups along the learning curve by developing their critical thinking capacities: Are their interpretations of data supported by evidence? How confident are they of their data? Can they explain or justify data interpretations they have made, and their validity? What do their interpretations say about possible next steps?

You can continue to build on this conceptual foundation, each step easier because the foundation is becoming broad and more stable. You have them assess the design of their investigation and interpretations of data: How certain are they that they got the right data and used the best techniques of data acquisition? How certain are they that their data do, in fact, tell them what they need to know? Has their knowledge and expertise increased during this process? How much do they really know? Questions like these will tend to focus their thoughts on how they are learning and doing. Metacognition. Students who know how to learn know how to learn. Communication within effective work groups helps generate this capacity.

When they are ready, you have the groups report in a symposium. This is where their communication skills will be called upon to build conceptual understandings. How familiar are they with their evidence and its interpretation? How well do they comprehend other groups’ data and interpretations? How well do they generalize what they’ve learned and developed about collaborative communication within their work groups? Do they move it outward to carry on effective discussion with all of the work groups in the class? When an entire class develops the capacity to engage in substantive conversation about what they are learning, they’ll learn and nail down more than you could ever teach them using the publishers’ prepared materials and recommendations in the Teachers’ Editions.

Learning about science, but not doing science, does not develop the capacities described here. By only collecting and reporting data, students don’t engage the critical thinking capacities of their brain. I’ve observed science classes in which students looked up the boiling point of a liquid, say water, boiled the liquid and noted that it did boil at that temperature. What do they communicate amongst themselves? Is communication actually involved here? Or, are they simply engaging a perfunctory ritual? Might they have learned more if they had heated 3 or 4 liquids, noted their boiling points (or figured out how they’d know the boiling points, then test that), then looked up boiling points and made a guess about what their liquids were?)

Nor do they develop their capacity for conceptual learning when they simply learn about science, and commit science facts to memory. When students do engage in self-directed inquiries, examine the relevance of their collected data, critique it and the process of collecting it, and formulate interpretations they agree upon, they become involved and invested in the work, and empowered as persons. Engaging life. Engaged students are learning students. What our schools need today.

There’s not a lot of information out there on how to engage this part of teaching. There should be. This kind of work supports critical thinking, so it is of value. Critical thinking uses a part of the cortex that is especially well-organized for conceptual learning. That’s the prefrontal cortex, where relevant information from associative memories throughout the brain are brought together in working memory to nail down this new learning, then send it back out to associative memory; not as a fact to memorize for a test then forget, but as something more akin to common sense – something integrated into associative memory that you ‘just know.’

This critical thinking system turns on when you ask a question that is meaningful to you, and seek an answer to it. Science inquiry is a perfect complement and extension of this cortical learning system. In contrast, learning simply to prepare for a test won’t, of itself, entrain critical thinking. Instead, because of its aversive nature, learning content in order to answer test questions is accompanied by some level of anxiety, and entrains the limbic system, which isn’t good at engaging critical thinking. At least in this context, learning facilitated by anxiety about passing a test.

As the Common Core State Standards (CCSS) and Next Generation Science Standards (NGSS) continue to influence teachers’ and students’ experience in school, they present some level of anxiety to many, whether from an unfamiliar expectation for performance, change from structured, curriculum-directed teaching and learning to a more open-ended, active learning model, or from increased paperwork and accounting with no accommodating increase in free time for such work. Anxiety is processed through the limbic system, which impacts how the brain learns; which of its resources are freed for the task. As student and teacher stress levels increase, it becomes increasingly difficult to engage critical thinking. Instead, the limbic system, busy processing anxiety, increasingly limits communication with the prefrontal cortex, where critical thinking does its work. Instead, learning is limited to simple thoughts, which remain connected solely to the need to pass questions on a test, with little or no integration into associative memory, as occurs in critical thinking.

On the other hand, when students and teachers are free to explore new learnings (which the CCSS and NGSS seem to be interested in), to ask questions and seek answers to them, the limbic system supports this work with a heightened sense of pleasure and excitement, and feelings of well-being and inquisitiveness. And by assuring the doors to the prefrontal cortex are open.The different limbic involvements in learning are entrained by the properties of the learning environment. As they were when our brain evolved in the savannah during the Pleistocene. Might we use that history to revisit how we teach? How we organize student-student interactions while they learn? In the classroom and on-site in the natural world? In these cases, the limbic supports the work of the cortex, especially the prefrontal cortex, where working memory resides, and the brain’s conscious executive functions do their work. Work in which goals direct effort, reasoning and abstract thought are supported, and critical thinking takes place. Where we actively construct knowledge and commit it to long-term associative memory; ask questions, design investigations, develop needs-to-know which drive us into the information we seek, desire to complete and communicate our work.

When we are driven only by anxiety about not being able to answer questions on tests, this wonderful part of our brain is lost to us. The limbic system limits its use, and we simply memorize disconnected bits of information long enough to use them on a test, then forget. Are we teaching for fight or flight, or for higher-order critical thinking?

Used knowledgably, communication as practiced in doing science has the capacity to produce a foundation for critical thinking. By the information it generates, the testing of the information, and its processing and communication, it involves and invests students in critical thinking; in using their prefrontal cortex, its executive and working memory functions. The key feature is that the students, not the teacher, are involved in constructing knowledge. The teacher, while responsible for producing an environment where a constructivist approach to learning will probably happen, becomes a facilitator of their work. A difficult transition for many of us to make. I went into it willingly, but once committed, sorely missed lecturing and wowing students with the wondrous things I could show them in the lab. In spite of this, when I would pull out my old lesson plans, it would be immediately clear to me that this constructivist model was much, much more effective and empowering. And I eventually discovered this was because it used those sites and connections in the brain which were organized to engage conceptual learning. Something my pre-service and graduate education in teaching never addressed. It should have. Had it, and we learned as our brain is organized to learn, we just might have learned well.

Communication, when it is substantive, has the capacity to facilitate critical thinking. It does this by requiring us to consider what we are saying and doing, which is a readily useable road to the prefrontal cortex and working memory. Sort of like working in a shared workspace, a place with all the resources and facilities you need to focus on what you are learning, and the executive capacity to follow up on what you have learned.

jimphoto3This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests,and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”

Finding Lessons In the World Around Us: Bringing the Pieces Together

Finding Lessons In the World Around Us: Bringing the Pieces Together

Finding Lessons

Were You Assigned A Class You Have No Background or Preparation to Teach?

 

by Jim Martin
CLEARING Associate Editor

One year, I worked with a middle-school mathematics teacher who decided to engage his class in some work on a wetland and lake bordering a large river. He did this partly as a diversion from classroom struggles – his background and training weren’t in middle school mathematics; there was no one else available to do the work. And, he was interested in the concept of engaging his students in their community – project-based learning.

So, we went down to the site and took a tour. As we walked and talked, he suddenly stopped, took a few steps back, and stood looking down a shallow slope to the lake, then up the slope toward a wooded copse. I waited a few moments, then he remarked in an excited voice that everything changed as you looked from the water to the slope, and on up to the trees. He said something made that change, and it had to do with the slope. Then, he described what students would explore on a transect along the slope, and how. Wow! His class did the project, and, within two years, he developed into a very effective teacher.

What happened here? He knew he wanted to do something. He knew where he was in his mathematics teaching. And he was interested in his students. But he didn’t get any further until he took a walk, talked about what was there and what students had done, and noticed a slope – geological and mathematical – and, in terms of subsequent progress as a teacher, clarivoyant. The pieces of the puzzle suddenly came together.

How do we move from teaching our curricula one piece at a time, a disconnected clutter of disparate parts? Parts, learned long enough to refer to in a test; then, lost in a long trail of discarded artifacts. We need clear, strong trails if we are to lead effective, self-actualized lives. Learning has the potential to help us organize our selves so that our lives produce clear, permanent trails. In his teaching the middle school mathematics teacher began to build these clear trails, both for himself, and for his students. Part of the secret is learning about the curriculum in the real world, and its connection to the disparate clutter of artifacts we teach. In the classroom and on environmental education sites. I suggest we need to integrate them.

BEETLES-2One thing this teacher did was to let the class in on the plan. Doing this at the start involved and invested them in the work, and began to empower them to take responsibility for its parts. Early on, he began to notice that students were doing good work, and that they brought different sets of skills and abilities to the work. This was a pleasant surprise for him, and he began to see the class as a group of individuals who could make the classroom work environment an interesting one to be part of.

Soon enough, he reorganized the class into work crews, each one responsible for part of the job of assessing a transect up the slope from water’s edge to wooded copse. Accomplishing this was an utterly new experience for him, but he took to it as if he’d done it for years. Within a few weeks, he was beginning to coordinate his curriculum to the work on the slope. Aware of the mathematics curricula he was charged with, he organized the school week into days dedicated to mathematics and to the project. Students didn’t divide their new sense of personal investment in school. They became reliable students each day. Why? I think, because they were learning as humans evolved to learn. How their brain is best organized to do that job. Go into the real world, find real work to do, then focus all resources on this.

I think there were several vehicles which enabled this classroom to navigate from struggling to self-powered learning place. Specifics varied among teacher and students, but each vehicle carried them through its part of the course. The teacher was charged with teaching mathematics, for which he wasn’t well-prepared to do. He was both interested in improving his teaching, and in engaging his students in learning projects in the community in which they lived. Then he saw something, a slope in a landform, that brought these two seemingly disparate entities into a dynamic construct, a conceptual foundation for real learning, learning for understanding.

His students also boarded their first vehicles: crews, embedded curricula, brain work. At first, their commitment varied, but nearly all became interested in the project when they heard about it from the teacher. At the beginning, they were randomly assigned to their groups; but, as the teacher became more aware of them as individuals, he began to reorganize them into effective working groups, crews organized to execute particular parts of the plan.

So, the relationships among the people in the class began to morph. The teacher became the project manager, and the crews became technicians and staff working with a crew leader. Project manager and crews learned to reach out to local experts for advice. The teacher, because he was managing the project, and feeling responsible for teaching mathematics, began to use the mathematics embedded in the work site and the work itself to deliver part of his curriculum.

Locating embedded curricula seems difficult at first thought, but once you try, it becomes relatively easy. For instance, students can measure the maximum width and length of a leaf, and calculate the width to length ratio. They repeat this with other leaves from the same tree to see if that ratio holds true. Then they can see if there is a ratio for the maximum width of a fir or pine cone and its length that is consistent among a sample from the same species. As they do, ratio and proportion becomes sensible, a conceptual tool to use, rather than something to memorize for a test.

This doesn’t apply just to mathematics and science. Look for examples of alliteration in a natural area or in the school’s neighborhood. I’m looking at an example just now – a small tree whose leaves are attached to thin branches in an alternating sequence. When I see a set silhouetted against the sky, their leaves tripping along the branch, I see alliteration. Looking out the same window, I see many metaphors. Metaphors which can activate the same parts of my brain that are activated when I am engaged in close pursuit of the answer to an inquiry question. A very useful brain tool.

Looking past the leaves and metaphors, I see examples of social studies, music, art, drama, history. It’s all out there, the curricula we teach, in a form our brain is organized to use. Once it is engaged, we can then move into the prepared curricula which lives in classrooms. With one difference – this curricula will come to life because it will be engaged by a need-to-know generated by the world we live in. And learned in a way that ensures it will be used. In time, you will find that you can milk the prizes found on one excursion from the classroom to the schoolground, neighborhood, or riparian area for more than the embedded curricula you find. What you find and use generally has links to other curricula, and you can extend these threads quite far before you’ve either used them up, or have become tired of them.

These are things the teacher I worked with learned during the time we explored learning for understanding. By moving into the world we live in and discovering the curricula embedded there, and the involvement and investment the experience invoked in his students, he began to reorganize his teaching. The mathematics he discovered on site clarified what he was trying to teach in the classroom. The energy and growing expertise his students brought to the work helped him learn them as persons, to know when they engaged what I call the moment of learning, and to use their individual strengths to overcome their weaknesses. And they all grew. Because, in my opinion, they engaged their brains in the way brains evolved to learn and cope. Once engaged, they were ready to enter the more formal, abstract curricula which lived in their classroom. To learn it, not to pass a test, but to build their lives.

jimphoto3This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests,and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”

A Journey Of Surprises

Rivers reveal their secrets to Idaho students researching water quality through rigorous scientific inquiry

Photos and story by Suzie Boss

Squiggly blue lines cover the map of Idaho, a state with more than 2,000 lakes and hundreds of miles of rivers. From the perspective of veteran science teacher Bob Beckwith, all that water means that nearly every Idaho student has easy access to a creek, a stream, or a lake. “Probably 95 percent of the state’s population lives along a watershed,” he estimates. And where there’s water, Beckwith can promise you, there’s a science project worth pursuing.

On an early winter morning, for example, Beckwith and fellow Eagle High School biology teacher Steve DeMers loaded three classes of warmly dressed sophomores and armloads of scientific gear onto a school bus and headed off on an all-day investigation of water quality along the Boise River. By the day’s end, students had made four stops to gather data between the mouth of the river and headwaters in the mountains west of Boise. They waded midstream to collect invertebrates and dipped their hands into icy currents to test ph and oxygen levels. They checked and rechecked their measurements, keeping careful track of resulting numbers for future analysis.

Despite the frosty weather and the high spirits that come with escaping the classroom, students resisted the urge to hurl snowballs. And all day long, there was no whining. Every student participating in the trip was there by choice, doing what Beckwith calls “real science.”

Since he began teaching in 1972, Beckwith has been using projects to introduce his students to the scientific method. There’s no shortage of evidence that it’s an effective strategy. Beckwith himself is a past recipient of the Presidential Award for Excellence in teaching secondary science. Several of his students have won regional and national honors in elite science competitions, and many have gone on to launch careers in engineering, biology, medicine, and other fields that require a deep understanding of science. Even students who aren’t destined for technical careers, Beckwith points out, gain the benefit of “learning to ask a question and figure out the answer. That’s how I define science literacy.”

On the banks of the Boise River, three girls from Eagle High interrupted their fieldwork to explain the appeal of project-based learning. “We learn so much more this way compared to reading a book,” said one. “You get to experience it yourself, so you really understand what something like turbidity means,” added another. “This applies to me,” explained the third girl. “This is a river where I might want to swim or go fishing. The quality of this water matters. It’s important. And I have the tools right here to find out whether or not it’s clean,” she said, holding up a vial of river water she was evaluating for the presence of nitrates. Although she knew there would be more analysis to be done later, back in the classroom, she had already gained one insight from taking snapshots along different parts of the river: “Upstream, away from the city, the water gets cleaner.”

photo, kids gathering specimens from the river bottom

photo, examining a screen for macro invertebrates

photo, testing water quality

photo, giving the results to the teacher

During a winter day spent collecting data along the Boise River, students in hip waders used a kick screen to gather specimens from the river bottom (at top); examined the screen for macro invertebrates; tested water quality; and, finally, reported their numbers to teacher Bob Beckwith (bottom, right, with clipboard).

Sharing Skills

Through an ambitious effort he launched several years ago, Beckwith also helps other Idaho teachers acquire the skills, equipment, and confidence they need to incorporate project-based learning into their classes. Project SITE—which stands for Students Investigating Today’s Environment—engages students and teachers across the state in projects involving scientific inquiry into water quality, noxious weeds, and other real-world concerns.

Beckwith co-directs SITE with David Redfield, dean of health and science at Northwest Nazarene University in Nampa. Support for the project has come from a variety of sources, including several Idaho colleges, school-to-work partnerships, the state department of education, Idaho Rangeland Commission, and private funders such as the J.A. and Kathryn Albertson Foundation.

More than 200 teachers have gone through SITE training, which immerses them in the same kind of project-based learning they will later orchestrate with their own students. The core of training is an intensive, five-day summer workshop that reminds teachers why science is best understood through active learning. Little time is spent listening to lectures or reading texts. Instead, teachers do real fieldwork, rafting the Salmon River to collect data that relate to water quality or surveying plant life to assess the spread of noxious weeds.

“It’s not lecture/read/do a canned experiment,” Beckwith says. “We might talk for short periods about things they don’t understand very well, then provide them with an experience where they can pose questions and do research to figure out the answers. So it’s a steep learning curve. We model how science works. Science is not a textbook—that’s a history book of facts that scientists have already learned by asking questions. Those facts are an important foundation,” he acknowledges, “but real science involves going out and answering new questions.”

Between Monday and Friday of a typical training week, “teachers learn everything they need to be classroom ready,” Beckwith says. Participants also come away with armloads of gear provided by SITE. “We don’t just train them and then expect them to find a way to buy their own equipment,” he says. “We give them all the stuff they need,” he says, such as test kits, digital cameras, and a manual he wrote in accessible language to guide students through nine scientifically valid field tests designed to measure water quality.

In return, teachers agree to take their students out on data-gathering projects at least three times during the school year. They also bring SITE students together to present their projects during an annual Idaho Student Showcase Day in the spring. By fulfilling their end of the bargain, teachers can earn a stipend.

Providing teachers with such extensive support means that the SITE organizers have had to devote considerable energy to writing grants and reaching out to potential funders. The program invests about $1,500 per teacher on training and supplies, Beckwith estimates. But the investment pays off, he says, by “freeing teachers to focus on teaching.” Water quality —which integrates biology, chemistry, and physics—continues to be a prime focus of fieldwork, but funding for research on weeds has led to new SITE projects in the area of life sciences. “As long as we can collect data, work as a team, and ask questions, then it’s a valid project,” Beckwith says.

To be sure, project-based learning puts high demands on the instructor. “This takes energy,” Beckwith admits at the end of a cold day spent outdoors with a busload of teenagers. But for teachers who enjoy being learners themselves, this style of teaching “helps prevent burnout,” he adds. “It lets teachers engage in questions, too. They have to know enough to help students figure out the answers. As a teacher, you have to allow students to go places even if you don’t know the answers.”

Some teachers need a little “nurturing,” Beckwith admits, to gain the confidence to launch students on challenging projects outside the confines of the classroom. “For others, this way of learning fits so well with their teaching style—it’s natural. They pick it right up.” When Beckwith explains SITE methods to teachers who already believe in active learning, “you just have to put the idea on the table and then run to get out of their way!”

photo, girl using water quality equipment

Students use scientific equipment to measure water quality indicators— not once, but three times. Later, back in the classroom, their numbers will be added to a statewide database. Their first field lesson: accuracy counts.

Pleasant Surprises

Shannon Laughlin was in her first year of teaching middle school science when she saw a flyer about Project SITE. She signed up for two weeks of workshops last summer, including a five-day raft trip along the Salmon River.

“You work your tail off,” she recalls, laughing. “You’re on the river nine hours a day, then talk more about science at night. It’s wonderful!” Although Laughlin holds degrees in both plant science and entomology, she had never done fieldwork. “This kind of hands-on training gives you a chance to prepare,” she says, “so you’re ready when it’s time to take your kids out.”

Last fall, Laughlin began introducing her students at Marsing Middle School to project-based learning. For students and teacher alike, Project SITE has been a journey of surprises. “My kids started by asking me, ‘What are we going to find out?'” Laughlin would tell them: “I don’t know. You’re the scientists.” Project SITE is worlds removed from what Laughlin calls “canned labs, where you can guess what the results should be. What’s neat about this is, you don’t know ahead of time what you’re going to learn. I like to do things where I don’t know the answers in advance.”

Laughlin’s students have been using SITE protocols to test water quality along the Snake River, which runs right through their community and is only a five-minute bus ride from the school. “They fish in this river and swim in it. The river is a part of their life. So they have a personal stake in asking: Is it clean?” That question has led them to others, such as: What affects water quality—agriculture? pollutants? animals?

Although Laughlin says SITE has opened the door to powerful learning opportunities that build science literacy, that’s not the only benefit she’s witnessed. Using field-tested SITE methods, she asked her students to break into teams and choose their own captains. “The ones they chose as captains are not necessarily the usual leaders. But these kids blew me out of the water,” Laughlin admits. “Natural leadership does not always show up in the classroom. These kids did a great job, and it gave them a chance they might not have had otherwise to demonstrate their leadership, their competence.” She enjoyed sharing that observation with her principal, who came along on the first field trip and has become an enthusiastic supporter of the project.

Power Of Teamwork

Beckwith knows from experience that teamwork is a valuable component of SITE projects. “The tasks are such that one person can’t do it alone,” he explains. “Students have to work in teams, and team members have to depend on each other.” Back in the classroom, teams share test results as part of their quality assurance. “If the teams get similar results,” he explains, “they know they’re on target.” Because data are entered into a SITE database that students all over the state can access for research, accuracy is critical.

What’s more, the team approach to research allows all learners to contribute, no matter how diverse their skill levels or how different their learning styles. “Out in the field, they all can be active participants,” Beckwith says. “Nobody’s sitting on the bench. When they come back into the classroom, they can share their data. Every number offers some valuable information.

David Redfield, a professor of chemistry at Northwest Nazarene University in addition to being co-director of SITE, is convinced that such projects “are not just for the elite students. It’s amazing to see kids who are not particularly strong in traditional classroom settings step up and take on a leadership role on a team. They all can use their strengths.

At the university, teamwork skills are valued, Redfield notes. The depth of science literacy that SITE fosters should help prepare students for the rigor of college-level work. “By the time they reach the university, we should be seeing students who are further along as scientists,” he predicts.

SITE not only introduces students to the process of scientific inquiry, Redfield says, but also gives them enough practice in fieldwork so they can start to become confident researchers. “It’s important for them to go out at least three times during the school year to gather data,” he explains. “The first time they do the tests, it feels like a lab exercise. They’re just learning how to use the equipment, take the measurements. But by going into the real world to gather data, then returning to the classroom to analyze results, they can start to look for patterns. They ask questions to figure out why they got the results they did. It becomes a real experience—the numbers have relevance.”

As students repeat the data-gathering process, “the repetition builds their skills,” Redfield says. “If the data seem off, they can take a close look at how they’re collecting samples. That’s a problem-solving exercise right there—to figure out how to correct their methods in the field. They start to know enough to question results if the numbers seem flawed or wrong. That takes confidence.” As students repeat the cycle of posing a hypothesis, gathering data, and analyzing results, “it takes them deeper and deeper into understanding what’s happening, and why,” Redfield says. “When they’re confident about their numbers, then they can move on to ask: What are these numbers telling us? Why did the oxygen go down? What else changed? Is there a relationship, a pattern?”

Beckwith also takes a long-term view of where Project SITE might lead. “Once they learn to use this model, students should be able to apply scientific inquiry to questions of their own. There should be some students in every class who get really excited, really curious. They can take off on their own investigations,” he says.

He’s seen it happen. One of his former students became curious about Mars, and went on to design an experiment that won a national competition sponsored by NASA. Another girl had to miss some class time because her family was traveling to India. She packed along a water quality kit and tested samples of the Ganges and other rivers, which she compared to the water quality of Idaho rivers.

Recently, Beckwith received an e-mail from a student, now a junior in college, asking for a letter of reference for graduate school applications. It was in his biology class, doing Project SITE, that she did her first fieldwork and became inspired to become a scientist. Beckwith will know when project-based learning really takes off in Idaho and transforms the culture of the classroom, “because we’ll be flooded with letters like that one. It’s far better than any test score,” he says, “for measuring success.”

What’s in SITE?

Teachers currently involved in Project SITE recently came together for an all-day workshop to share information about their classroom activities. Their experiences show that project-based teaching methods can work in a variety of settings and appeal to a wide range of learners. Among the examples:

At Kuna High School, students can start participating in SITE activities as freshmen, in Ken Lewis‘s ninth-grade biology class. “We focus on ecology, and use SITE to explore biotic indicators like macro invertebrates. Working in groups, they come up with some great hypotheses,” he says. Later, when students take chemistry and physics, they use SITE inquiry methods again. “I see a bump in their understanding,” says teacher Mike Weidenfeld. “They have better techniques, deeper understanding.” In chemistry, for example, he uses SITE “as a springboard.” Collecting water samples “gets kids to ask questions like, Why is ph important?”

Roy Gasparotti teaches a yearlong projects class for seventh-graders at New Plymouth Middle School and says SITE “fits right in. Interdisciplinary projects are part of our curriculum.” He asks students to assess whether water samples “are good or bad. Then they develop PowerPoint presentations with their data. It’s more fun for kids to work with their own numbers, to graph data they have collected. It’s more meaningful to them.” Fellow teacher Craig Mefford works with the same students on writing their hypotheses and making carefully worded observations.

Will Zollman, who teaches agricultural science at Midvale Junior-Senior High, took a SITE training session on weeds last summer, along with his superintendent and a school board member. So district support for project-based learning is a given. “This has added to my teaching,” he says. “It’s made me look at weeds in a different way—how do they affect rangeland? What can we do about them?” Those are questions he hopes to have his students exploring through fieldwork this spring.

Steve DeMers, who teaches at Eagle High School, has been involved with SITE for three years. “I want to take it a step further,” he says, to get students to consider deeper questions after they have gathered data. He has students use their test results to create graphs with Excel software. “Then I ask them to look for trends. What should a graph look like? Can they explain what’s happening, and why? I’m trying to get them to recognize patterns.”

John Pedersen, a middle school teacher in Nampa, took a SITE workshop early in his teaching career and has been using project-based methods ever since. This year, students are doing water and weather studies. “One student trains the next to enter data,” he explains.

Chad Anzen at Fruitland High School is starting to see students who have had the benefit of project-based learning as early as middle school. “We have a middle school teacher who does SITE, and I’m getting those kids now in high school. They take off so much faster. They act like teachers themselves,” he says, “helping their classmates understand how to do field tests.” By the time the same students take advanced biology, he adds, “they’re ready to go to the step of analyzing. It’s exciting.”

Do It Yourself First: Leading Student-Directed Inquiry

Do It Yourself First: Leading Student-Directed Inquiry

Do It Yourself First: Leading Student-Directed Inquiry

inquiry

by Jim Martin
CLEARING guest writer

I-bluef you’ve never taken your elementary, middle, or secondary students out of the classroom to learn, and can’t find a helpful mentor or workshop, it’s okay to learn to use the real world to generate curricula and teach for understanding rather than to pass tests just by doing it. Just make a plan and stick to it, and you’ll be okay. Try a place on your school grounds first, then move to a place in the community when you’re comfy.

There is a simple way to do a student-directed inquiry outside your classroom, involving observations on invertebrates. You can use it to discover whether this kind of work is comfortable for you to do, and if it generates curricular content that satisfies your anxieties about meeting mandated standards and benchmarks. You can start it on your school grounds, or if you’re not comfortable with that, right in your classroom. The only caveat is that you have to let your students think and ask questions, and follow the parts of the project that capture their interest. That is, after you’ve first guided them (and yourself) through the process.

ALERT: You need to be a CLEARING subscriber to read the rest of this article.
(enter password then hit return button on your keyboard for best results)

[password]

The nice thing about the project we’ll be describing is that it begins with you facilitating a guided inquiry. It doesn’t matter what grade level you teach, the basic work applies to all of them. The vocabulary and complexity of conceptual content will vary with grade level and student experience, but the basics apply to all levels. The plan is this: We’ll make a small compost heap, then see what comes to live in it. Then we’ll have our students do the same. Simple, but loaded with potential.

First, do your own inservice, perhaps this summer. Start the compost in your own yard or somewhere on the school grounds as your source. Don’t place it where it will always be in direct sunlight, since it needs to stay moist. Put about 5-10 gallons worth of different kinds of plant material in it and turn it once a week with gloved (or ungloved) hands. Keep it moist, but not wet. It’s necessary to start outdoors to attract the invertebrates and microbes which will populate your students’ compost ‘piles.’ As you tend your compost heap, notice what is living there. (If you’ve already done this, I’ll bet you’ve gone to a book or the web about what you’ve found. That’s your brain doing what it’s designed to do.)

As you do your work, try out some learning activities. What is the temperature at the surface of the heap, and in its depths? How do you go about measuring the temperatures? Any glitches? Ask yourself how any temperature differences might have come to be. If it’s not directly explainable to you, who might you ask to find out? (This is a skill we all have to develop when we move out into the real world.) What mathematics activities can you use to make sense of the temperature data? What tells you more, the numbers themselves, or their graph, average, median, range? Would the data be different if the compost heap was larger or smaller? Let’s look at more of the things we can learn.

After your compost heap has been working awhile, you should be finding an increase in the numbers of invertebrates living there. If this isn’t the case, go to places where plant material is obviously decaying and bring samples back to your heap. Keep a record of how many species you find in your heap as you turn it, and how many of each you observe. This means you’ll have to be systematic about how you turn the heap. And about how you record the information you measure, count, and observe. You can pass these skills and understandings on to your students.

As you count species and their numbers, use that data to track species diversity in your compost heap. As a rule of thumb, the greater the species diversity, the healthier the system. Whether you work with kindergartners or high school seniors, you’ll need to know something about species diversity. You can google the term, find some sites which explain it in a way you can understand, and which detail some of the math used to make sense of the numbers. Here’s one you can use; a little esoteric at first glance, but ultimately doable; Simpson’s Index, D = Σ ni(ni-1)/ N(N-1), where D is Simpson’s Diversity Index, Σ stands for ‘the Sum of,’ ni is the number of organisms you counted in the ith species (so the number of organisms in the 3rd species you counted would be n3, and i goes from 1 to the total number of species you counted), and N is the total number of individuals counted among all species. This means that you take the sum of the numbers you get from multiplying the number you counted in each species times that number minus 1, then divide that sum by the total number of individuals you counted times that number minus 1.

Try it for 3 species: Species A, with 10 individuals; Species B, with 5 individuals; and Species C, with 20 individuals. The first ni set is 10(9), the second is 5(4), and the third 20(19), which totals to 490. There are 35 individuals all together, so the denominator is 35(34) = 890. Dividing 490 by 890 gives you about 0.56. What if the counts were 23, 51, and 36? Your numerator and denominator should be 4,316/11,990. If this is confusing, say so in a comment below, and I’ll get back to you with more details.

Sounds complicated, but by the time you’ve done three or four sets of species, you’ll get it down. Just be sure that you sum all the individual counts times themselves minus 1 before you divide by the total counted times the total counted minus 1. The answer to all this, D, gives you a number you can compare with other counts you or your students make. Remember, the reason you need to try this diversity calculation is to get an idea of one way that diversity is described. With your students, you can just use the total number of species present to stand for the same thing. This is the simplest math which can be used to estimate species diversity, the total number of species, a number students can use to compare the number of species in different compost heaps, and which may correlate with other measures of diversity.

There is a spectrum of ways to name diversity: number of species, species richness, species evenness, or a calculation like Simpson’s Index. None do a perfect job, since diversity is a dynamic with many aspects. For now, you can only choose one and use it consistently until you have good reason to use another statistic. We’ll take another look at this in the next blog.

Use your counts of living things to graph a population curve. Choose one species and plot it with time on the x-axis, and number of individuals on the y-axis. This is a population growth curve, and they are an indirect way of determining how an environment treats a particular species residing within it. In setting up your compost heap, you’ve created a new environment, and populations living within it should increase during the initial exploitation phase. Soon enough, those curves will change, raising nice inquiry questions.

Use the heap itself for learning. How big is it? Is it always that big? Bigness can be derived from measurements that students make. How tall is it? How wide? How long? How can you determine its volume? Do any of those numbers correlate with the range of temperatures in the different compost heaps? Species diversity? Population curves? Temperature range and diversity?

What about the biology of the organisms living in the heaps? If you’re up to it, you can take a piece of liver, blend it with a little water or electrolyte like pedialyte, then introduce a drop of this to a container with 250 ml or more of hydrogen peroxide (H2O2 ). Take the temperature of the hydrogen peroxide before adding the liver extract, then periodically during the next 20 minutes. As simple carbohydrates are metabolized to produce useable energy in the form of ATP in nearly all organisms from microbes to Homo sapiens, the extra oxygen atom in one of the intermediary products, hydrogen peroxide, is released leaving water (H2O), an oxygen atom (O), and the energy which held the oxygen atom in place. That energy isn’t re-used, and goes off as heat. Compare the results of this experiment with your data on population and temperature. Is there something to be learned? Might your students understand the basics of what they observed?

What can you find out about four of the species in your compost that explains how they are able to live there? The organisms you find are living in a dynamic relationship which keeps the entire community alive, an economy which cycles materials and moves energy in a productive way. Can you build some elements of a food web from the information you have? What else can you find out about the biology and ecology of compost heaps?

If you teach or use language arts, how can you use the compost heap and its components as metaphors to drive a piece of writing? A piece of art? Music? If you teach science, and have never used these arts and humanities deliveries, try one. You might be surprised at what you’ll learn. I certainly have been.
When you’ve studied your compost heap long enough to feel comfortable with it, have your students learn some thing about them. Use the piece you have the best handle on. The first time through the process with your students, you demonstrate each step. Let students ask questions or make observations as you feel comfortable. You can use your own compost, and demonstrate how to turn it to expose the invertebrates living there. (If you’re up to it, you can find out how to plate out microbes that will be living there, and find out what they do and who eats them.)

When you’re ready for your students to do theirs, have each group start compost heaps somewhere in the schoolgrounds, one 5 gallons in size for each group of four or five students. You can also have students bring in their own mulch, etc., or place boards on the ground at home then collect what’s living on and under them including any molds they find. You might suggest they place the animals in a jar of moist compost, keeping the lid slightly ajar for air, and simply bring the board in and set in in their compost heap. Once compost heaps are doing well (outside the building), you can make ‘sand traps’ by filling plastic bucket lids with a layer of sand and placing them next to a compost heap. Any small mammals or birds who are attracted to the compost will leave footprints in the sand. These don’t always work, but are pretty neat when they do. This will raise questions they can begin to answer.

[/password]

jimphotocroppedThis is the twenty third installment of “Teaching in the Environment,” a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests, and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”