Jim Martin: Arts and Humanities in the Sciences?

Jim Martin: Arts and Humanities in the Sciences?

schoolshipblogspotcom

schoolship.blogspot.com

Arts and Humanities in the Sciences? Is that incongruous, or what?

By Jim Martin

Have you ever ‘felt’ the weather as cloud formations began to change? I love to watch Mares’ Tails form; multiple long extensions of a cumulus cloud that race out ahead, then turn up and curl back. They signal a change in the weather; an eye-catching choreography in the sky; a dance students could perform to learn about weather. I started teaching biology to college students in 1970, and had no thoughts about using the arts and humanities in my delivery. I was open to them; my childhood and youth were infused with them. But I saw no way to employ them because it seemed to me that they were an adjunct, a vehicle I would have to tack onto an already overloaded syllabus.

Then, a few years later, concerned about the quality of my general biology (Bio 101) students’ understandings, and wondering what they were learning during their K-12 years, I accepted an opportunity to teach a 7th grade self-contained classroom. Before the first day of school, I decided not to use the school’s language arts texts and workbooks. They were utterly boring; pages to go through so you could answer a few tedious questions. So, I organized my own curriculum. In one part, the delivery vehicle was drama. We stretched sheets across the length of the classroom, and began to write and perform scripts.

I used these scripts, and their repetitious deliveries to teach topics like DNA and protein synthesis, natural selection, and more. While doing that, I discovered that certain pieces of the science were learned well with this method, so this integrated way of teaching started to become a vehicle I used to teach multi-disciplinary units in language, performance arts, and science.

This is beginning to sound ominous! Don’t despair. I did these things because I was comfortable with them. For one thing, I was teaching both language arts and science to this class. Since we were in the same classroom all day, it was an easy thing to do. I can tell you this: If you can find the courage to try to use one piece of the arts and humanities in one science activity, you might discover the strength of this method in helping students understand the concepts they are studying. And, developing critical thinking and executive functions you might not have noticed they carry with them.

Be patient. Let me finish this reminiscence, and we’ll get to the pragmatic details of how you might try one small activity; and assess it. Not long after, I found myself learning what I could of the human brain; how it learns, how it expresses these learnings. This set me on a journey I still travel. An interesting viewpoint on that journey was one where I could see the parts of the brain, and their connections (critical piece there) that were used to conceive a visualization of a piece of art, then execute its expression in the finished piece itself. Contrary to what I’d always assumed, that art and science used different parts of the brain for their work, both used nearly the same parts and their connections. No wonder my tentative attempts to teach art and science together seemed to work! While we isolate and jurisdict the disciplines, the brain does not.

It’s challenging to meet science standards and benchmarks by using the arts and humanities as vehicles for teaching to these standards. The main reason teachers who do this continue the practice is that students’ learnings stay with them. After they take the test, they don’t forget what they have learned. The Seeking System, as described by Jaak Panksepp, is a coordinated effort between the limbic system and the cortex which can lead to conceptual learnings, encourages conceptual learning by engaging learners in an active learning inquiry which builds on students’ curiosity. It’s this state of expectant curiosity which keeps students on-task, seeking an answer, finding out. Like observing paramecia flitting about among algae on a microscope slide. What are they? What are they doing? Where are they going? Curiosity a fair wind which drives their sails, students will devour the books and internet for information they seek.

While this state is initiated in the limbic, a part of the brain which does little thinking, it engages, via prompts from the limbic to the prefrontal cortex (pfc), which processes students’ thoughts, engages critical thinking, brings to working memory in the pfc other relevant information, and performs the executive functions which keep learners on task, following their plan. Learnings there then move back to the cortical regions brought on line, where they become connected; long-term memories, which can be called out via any of the neural circuits brought to the pfc to deal with this new experience.

Let’s look at an activity which incorporates the arts and humanities to drive a science unit in weather. Teachers have used dance to help their students learn the meteorological processes that cause phenomena like Mares’ Tails. You can do the observation any time in the year, then recall it when your class does meteorology. Or, start the dance when you make the observation, and finish in the appropriate unit. When students observe Mares’ Tails, then build a dance around what they have observed, they follow an interesting trail into meteorology to discover the processes involved in producing Mares’ Tails. And, even better, their connection to subsequent weather. Then, students and the teacher can use this newly learned information to better inform the choreography they are constructing.

As they observe and find out about Mares’ Tails, the fact that they are also observing for the clouds’ dynamics will engage the Seeking System in many students; the quest to find out. Engaging the idea of dance and Mares’ Tails will pique the curiosity of others. And, a very nice coincidence, both alert the prefrontal cortex and initiate the critical thinking and executive direction capacities of the brain as they build an abundance of routes to relevant memory, which your students use to move effortlessly through the landmarks delimited in Bloom’s Taxonomy.

While relatively simple, the teaching and learning in an activity like this is challenging for teachers. It is definitely not part of most of our pre-service and in-service professional educations. We all want to teach well, and to understand what and how we are teaching. If, like most Americans, the arts and humanities aren’t an integral part of our teachers’ developmental experience, incorporating them into our teaching is uncomfortable at best. In spite of this, in time, this sort of integrated teaching will have wider acceptance, but just now it seems like an adjunct to most education. I say this: The education establishment in America is woefully unfamiliar with the brain and its processes in learning, and its relationship with the rest of the body currently being described in the area of embodied cognition; the close coupling of processes in the brain and processes in the rest of the body. We need to have the courage to begin to explore this lucrative, brain-based teaching modality. The brain is the organ of learning.

By actively participating in the process of using dance to begin to learn about Mares’ Tails, both teacher and students incorporate the learning in long-term conceptual schemata they will carry with them. This is because the conceptual information they have learned is available via multiple neural pathways; much better than being accessed only by reading a question stem. Both the dance and the science inquiry follow similar trails through the brain. This is in contrast to the effect of relying on what Panksepp terms the limbic’s Fear System; the anxiety of some degree which is associated with learning science facts in order to pass a test. In this case, the information is stored by itself, un-connected to other relevant conceptual information stored elsewhere, and with no connection to the real-world memories produced during active learning. If students are to carry what they learn into their lives, they need to learn it in authentic ways. Seeking’s learnings are remembered; Fear’s are forgotten after the test. This means that the teacher has to be committed to this learning modality. And, committed to taking on only that which she is comfortable with. Should you want to try, but are unsure, you can contact a dance teacher to help, or a colleague who has taken dance. Lots of them around. You could even check a dance studio. Most people who work in the arts and humanities are open to help.

Here is a breakdown of planning steps a hypothetical teacher might take in preparing to deliver the Mares’ Tails meteorology/dance section of a unit on weather. As you read each step, ask yourself if you could do it now. You might surprise yourself.

1) Observe Mares’ Tails; either a serendipitous observation, or consult a meteorologist to find out when to expect them. Difficult until you’ve positively identified one; fun and easy after that. Students can do this as homework, or as a whole class if Mares’ Tails occur during a class. (You may have noticed that weather doesn’t program itself to coordinate with school schedules. Or their needs.)

2) During the observation, have students note any dynamics in the clouds. This is a good time to suggest the idea of clouds dancing.

3) If their interest is piqued, raise the idea of a Mares’ Tail dance; otherwise wait.

4) First approximation of the dance. Note questions which arise within groups.

5) Ask the class what more can they find out about Mares’ Tails. Give them time to find out.

6) Incorporate this information into the choreography. Name the dance’s sections from meterological learnings. (Note: I was feeling creative, in Seeking mode, by this time, and that’s when my pen wrote, “. . . (n)ame the dance’s sections from meteorological learnings.” Words and a visualization just popped up. Evidence my prefrontal cortex was coming on line. One of the things Seeking does.)

7) Perform the dance for an audience, and explain the meteorology; perhaps by dance section.

8) Two assessments or tests: Yours, based on their work; and a standard test from your publisher or the web. Compare results.

9) Assess the project: you, your students, their audience.

10) Write an article for Clearing and send it in!

jimphoto3This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests, and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”