E.E.’s Philosopher King

E.E.’s Philosopher King

Photo courtesy of Mike Brown.

Not One More Cute Project for the Kids:

Neal Maine’s Educational Vision

 

by Gregory A. Smith
Lewis & Clark College, Professor Emeritus

PART ONE

eal Maine, now in his late-70s is an iconic figure for many environmental educators in the state of Oregon. Early in his teaching career in Seaside, he decided to shelve the textbooks in his biology classroom and base his teaching practice on the premise that “If we couldn’t do it, we weren’t doing it.” He then focused on getting his students outside onto the beach and into the estuaries of the northern Oregon coast as well as onto their city streets and into public meetings, believing that the way to stimulate deep engagement on the part of his students required personalizing what they were learning by designing educational experiences characterized by immersion, involvement, and meaningfulness.

Central to Neal’s approach is a belief that functional communities provide the authentic curriculum that should occupy the attention of educators and their students. The job of the teacher is to create experiences that provide young people with the opportunity to access the processes that make a community work. Also central is Neal’s belief that students are among a community’s most valuable intellectual resources. As he observes, “Where else in the community can you get 20 or more people in the same room that can do calculus?” Instead of teachers seeing their task as getting students ready to do something in the future, they ought to be engaging them in work and experience that is valuable to the community right now.

I first met Neal in the mid-1990s on a visit organized by my Lewis & Clark College colleague, science educator Kip Ault.   Over the previous few years, Kip had worked with Neal in a variety of capacities and they had become friends. Well aware of my interest in environmental and ecological education, Kip figured I needed to get to know more about what Neal was up to.

The thing I remember most about that first meeting was Neal’s commitment to inducting children into the processes that citizens able to support a democracy need to know. He asserted that just as supportive strategies are put into place to teach kids how to play baseball (t-balls, pitching machines, smaller diamonds, fewer innings), similar supports and experiences ought to be used to teach young people how to be citizens. With regard to baseball, children learn how to play the sport not by reading about it but by getting on a baseball field and pitching, throwing, catching running, and making sure players on the opposing team are called out. The same kind of learning in context should happen in their community. To that end, he had overseen the development of memoranda of agreement with the city and county to tap children’s energy and expertise for community projects.

What I learned from Neal profoundly shaped my thinking about place- and community-based education and the impact that treating children as the citizens they are right now rather than in the future could have on both educational practice but also their civic practice as grownups. Neal claims that the most important thing children can offer to public dialogue is the fact that they aren’t adults; their thinking has not yet been fenced in by convention and conformity, and they have the capacity to offer fresh insights, creative solutions, and energy to the life of their community. Given my concerns about the link between schools and sustainability, I felt as though I had hit the jackpot.

Photo courtesy of Mike Brown.

Other people concerned about similar issues felt the same way after meeting Neal. When Paul Nachtigal, a widely respected expert in rural education from Colorado and the president of the Annenberg Rural Challenge, a national effort in the late 1990s aimed at helping schools and communities get better together, heard of Neal’s work, he quickly enlisted him as a board member of what was then a fledgling organization. I recently stumbled upon the business card Neal gave me when we first met, and it focused on this institutional association. I didn’t know anything about the Rural Challenge at the time, but I subsequently became a board member of the Rural School and Community Trust, the organization it morphed into after the initial funding from the Annenberg Foundation came to an end in the early 2000s. Both the Rural Challenge and then the Trust were advocates for place-based education and provided important support for early adopters of this approach, an approach influenced in important ways by the work Neal had been imagining and then enacting from Cannon Beach, Oregon to Long Beach, Washington.

In the summer of 2013, Neal invited me to spend another day with him at the coast to acquaint me with some of the projects that represented the essence of his work as an educator. As he mentioned at the time, he didn’t know how much longer he’d be around, and he wanted to make sure that some of his ideas outlasted him. He hoped that deepening my own knowledge about things he’d done and helped start would increase the likelihood that this might happen. To that end, I recorded our conversation as we traveled from site to site thinking that it might eventually make its way into an article. A mutual acquaintance of Neal’s and mine, Sylvia Parker (formerly a Rural Challenge steward and now an education professor at the University of Wyoming), helped get the five-hour recording transcribed, and I finally got around to rereading, coding, and analyzing what was shared that day in the spring and summer of 2018. Larry Beutler at Clearing Magazine expressed a willingness to publish what I was able to distill, and I set myself the task of trying to capture some of the central principles that undergirded Neal’s work in the hope that other Pacific Northwest educators might continue experimenting with some of the practices that have inspired me and many others both here and elsewhere for years.

In addition to his work as a biology teacher and football coach at Seaside High School, Neal spent more than a decade supporting teachers interested in adopting his out-of-classroom approaches after being requested to do so by the superintendent of the local school district. His impact on students—often those he described as being too creative to plow through the regular curriculum—had not gone unnoticed. They sought out his classes because “they had heard rumors that you got to do something there” and wanted to be part of the action. What they got to do had really meaning and purpose. While on the surface their work could be seen as little more than a “cute project,” what was actually happening went far deeper. They were being shown that their voices mattered and that their community could be made better if they spoke up and got involved. The following collection of place- and community-based learning experiences are emblematic of the educational vision Neal nurtured in the district.

 

A Compendium of Educational Experiments

Little Pompey Wetlands. Little Pompey Wetlands is located just a few blocks from the town center of Cannon Beach, a resort community nine miles south of Seaside. Somewhat more than two decades ago the city was interested in developing a nature trail for residents and tourists in the vicinity of the wastewater treatment facility and had hired a consultant to assist in this project. Aware of this effort, Neal approached the city manager about whether students might be able to participate in some aspect of this work as a means of honoring the memorandum of agreement that called on city and county agencies to make use of students whenever possible.   The city manager was interested; Neal then found a teacher willing to rework her spring curriculum so that many of its goals could be met through the project. They presented their plan to the board, gained permission to proceed, and then with the students decided to create a sign about the wetlands and its species that could be shared with visitors.

This project required not only gaining knowledge about wetlands ecology in general and the variety of plants and animals found in the area (including birds such as red-winged blackbirds, shovelers, eagles, and fox sparrows, and during the winter, an occasional coyote or Roosevelt elk) but also the tasks of writing the text for the sign, naming the wetlands, overseeing the spending of $2000 allocated for the sign’s production and development, shaping and assessing the work of the artist hired to realize their vision, and selecting a sign maker to produce it. In most conventional classrooms, this process would have stopped with knowledge acquisition and most often a test or perhaps individual or group reports. In this instance, students not only had to collectively determine the most critical information to display; they also needed to act as a citizen committee responsible for the wise use of public dollars and as the employer of adults who had contracted with them to fulfill specific services. A project like this treats students as the citizens they already are and gives them the opportunity to practice decision-making skills generally reserved for adults, a task few people, regardless of age, have been prepared for in school.

Naming the wetlands introduced a whole new realm of adult activity when students and their teacher learned they couldn’t simply give a name to a wetlands but had to go through a complex legal process. Investigating other wetlands in Oregon, they could find none that had been named after a child. An earlier unit had acquainted them with Sacajawea and the Lewis & Clark Corps of Discovery; they decided to honor her infant son Little Pompey by naming the wetlands after him. Their commitment to a name they had chosen themselves propelled them through the legal requirements of the state and introduced them to processes often required to accomplish meaningful work in a community.

Democracies depend on the capacity of citizens to engage in civic life in these ways. Not uncommonly, the knowledge required to do so is limited to people whose parents understand the rules of public participation since these skills and insights are not made available to the general population in any systematic way. By giving school children the chance to acquire such knowledge and skill, educators like Neal Maine are inviting a broader group of people into the decision-making process and cultivating in them the ways of thinking, speaking, and acting needed to accomplish tasks they believe to be important.   More than simple participation in marches and demonstrations, as important as these activities might be, “this is what democracy looks like.”

Friends of Haystack Rock. Central to Neal’s educational approach is its emphasis on the value of finding ways to situate learning experiences outside the school in the community or region, and in some instances creating new institutional structures to accomplish this end. Fittingly, the next part of our tour took us to a bluff overlooking the beach beside Haystack Rock, Cannon Beach’s geological claim to fame. Scores of people were clustered in small groups on the sand, looking through viewing scopes, examining displays on tables, listening to presentations. Neal explained that what I was seeing was the work of staff and volunteers at the Friends of Haystack Rock, an organization that has a cooperative agreement with the city to provide interpretive services to locals and tourists interested in learning more about the natural features of the area. Special attention is directed to the lowest tides of the year during the spring and summer when the marine gardens surrounding Haystack Rock are more accessible.

In existence now for more than 30 years, Friends of Haystack Rock grew out of Sea Week, a project Neal had started in the 1980s. During Sea Week, regular classes were suspended and students from throughout the school district would make presentations to the public about projects they had completed related to their home environment with the aim of preserving and protecting it.   Sea Week as it was implemented then no longer exists, but the Friends of Haystack Rock essentially provides the same kind of educational experiences but over a more extensive period of time with the support of volunteers, many of whom are young adults. Its volunteers also become the teachers of the community’s children about marine resources, offering programs both in classrooms and then on the beach. Although the school district ended up not supporting this effort over the long-term, its advantages were apparent to city leaders and an ongoing collection of volunteers who have sustained it now for three decades. Given the fickle and short-lived nature of many educational reforms, organizations like the Friends of Haystack Rock offer a way to perpetuate educational experiences aimed at enhancing the public’s knowledge about their region.

Coastal Studies and Technology Center. For ten years, the Coastal Studies and Technology Center, located at Seaside High School, offered another way to strengthen the relationship between the school and community. Under the leadership of science and technology teacher Mike Brown, students were able to get course credit for engaging in research projects requested by either the city or even federal agencies like the Environmental Protection Agency. The Center provided the workspace and intellectual support that allowed students to contact resource people at the police department, the local hospital, or other governmental offices. One group of students, for example, investigated the economic impact of the Seaside youth riots that occurred over three Labor Days in a row in the early 1960s. I accompanied another group of Upward Bound students working through the Center one summer day in the early 2000s as they mapped the location of woody debris in the Neawanna estuary. Using GIS equipment, they tagged and identified the location of the debris, data that were later recorded on maps of the area that would be used to preserve and enhance salmon habitat.

The Center functioned as a non-profit entity within the context of the school. Its success in pursuing grant dollars and its independence from traditional decision-making structures in the district, however, led to the imposition of constraints that eventually resulted in a narrowing of its focus to technology education. Still, for several years it demonstrated the way that an organization that treats young people as researchers and actors rather than passive recipients of knowledge passed down by others can create engaging learning experiences and do so in ways that benefit others.

Earth Odyssey. Neal was also instrumental in encouraging two fourth grade teachers at the elementary school in Gearhart, a small town just north of Seaside, to collaborate on the creation of a curriculum grounded in the history and natural phenomena of the north Oregon coast. Modeled on a summer camp program called Sunship Earth, the teachers ended up naming their year-long educational adventure, Earth Odyssey. The day of my tour, we met over lunch with Jan Weiting, who had taught in this program for three years. The work of Jan and her partner Larry Nelson exemplify ways that Neal’s vision can be incorporated into the classroom over the course of an entire year. Students’ work in the fall, for example, started with a study of entomology. They moved on from there to the archeology of the North Coast and the Indians who have lived in the area for over 10,000 years, Lewis and Clark’s experience of spending the winter at Fort Clatsop a dozen miles north of the school, and then on to the mountain men and the Oregon Trail. Nearly all of the traditional subjects could be taught through these broad topics tied into the district-prescribed curriculum for fourth graders. Over and beyond this curriculum, students planted trees that are now a small forest outside their portable classroom, painted a mural on one of the building’s walls, and dug and planted a pond. After school Jan and Larry would take smaller groups of interested students on additional field trips to investigate things like sea kelp or to lend a hand with conservation projects, learning activities that brought them recognition as conversation educators of the year by the US Department of Agriculture.

An especially significant activity involved the annual publishing of the Coastal Geographic, a collection of student writing based on interviews with local characters like a famous clam digger. As Neal observed, “The interviews of the people were just so personal and written in such a way that only a kid could talk about, the ordinariness of a person as opposed to the world record they just set.” Although only published for three years, the Coastal Geographic served as a model for the Neawanna Journal, a project that was adopted by a high school teacher who worked with students who were potential dropouts. The students interviewed people who had been born on the Neawanna River in the 1900s, took photos, and wrote up their stories. Their efforts won them an award from the library delivered at a public reception. Neal remarked that “The kids had so much ownership, it was just fabulous.” He added, however, “What sense does this make to have to be so bad at school that you get to produce something that the people who are really good [at school] wouldn’t have a chance at?”

Other Neal-inspired learning experiences. During his years as a teacher support staff in the Seaside School District, Neal found many ways to provide similar instructional opportunities to a broad range of students. One year a group of seventh-grade teachers approached Neal about helping them get funding to take students from their health classes to Portland to see the “plastic lady” at the Oregon Museum of Science and Industry and learn more about bodily systems. Neal persuaded them to pursue a less expensive and potentially more productive idea—a health fair the students would put on for senior citizens in which student groups would be responsible for running booths focused on physical systems like digestion or circulation or respiration. Willing to try out this idea, teachers enlisted the support of staff at the hospital to instruct students and provide equipment like respirators and blood pressure machines they could legally use with people who visited their booths. A day was then set aside for the fair, advertising went out to the public, and arrangements were made to hold the event at the senior citizens center. The fair ended up being well attended by community elders interested in helping the kids. When Neal heard one of the older teachers saying “It’s the first time I’ve ever really enjoyed seeing kids fight,” he asked about what she was talking about. She said. “They were fighting over whose turn it was to do the test next.”

Another year, a seventh-grade social studies teacher got in touch with Neal about a project he had in mind that was not much different from the trip to see the “plastic lady.” Neal explored ways that he might do something that required more involvement, and together they proposed to the Seaside City Council that students audit the decades-old city charter, something the mayor didn’t even know existed. Drawing on the six career themes that were then central to the Oregon’s educational reform—industry and engineering, natural resources, human resources, health services, arts and community, and business and management—the teacher had each of his six classes take on one theme and compare what was written in the charter to what the city was currently doing. The students early on realized they’d need support to do credible work, so they designed a resource list of people they then invited to their classes.   They went on site visits and synthesized what they were learning into a presentation.

At the end of the term, the mayor called the city council to order in the middle school gymnasium. With 137 people in attendance, it ended up being one of the largest city council meetings in the history of Seaside. As Neal remembered, “The kids started going to the microphone and presenting their audit results. Some of them were pretty harsh.” The school district, in particular, came in for some major criticism for its failure to spend the required one percent of money allocated for building projects on public art. The students noted that not one dime had been spent on art during a recent $7 million remodeling effort, something that shocked them after documenting the art works that had been incorporated in other local city and state building projects.

On earlier visits with Neal I’d learned about similar projects taken on by teachers and students from elementary school to high school that gave children and youth the opportunity to do school work that showed them what it means to be an involved citizen. Fourth graders one year visited a number of the parks in Clatsop County and then made recommendations about new playground equipment during one of the public meetings of the parks commission. Middle school science students did a species survey at an old mill site the city hoped to turn into a public park with federal urban renewal funding. High school pre-calculus students used trigonometry to determine the dimensions of all of the buildings on the tsunami plain so that emergency planners could use new software to determine the impact of smaller and larger tidal waves. Another group of fourth graders surveyed their families and neighbors about whether they changed the batteries in their smoke detectors when daylight savings time comes to an end in the fall. The possibilities for investigations like these are nearly endless; all it takes is the willingness of teachers to be alert to them and for community organizations to value and then make use of the intellectual resource provided by public school students.

Asking/answering questions of the world

Beyond inducting children and youth into the processes by which a community governs and cares for itself, I learned about two other elements of Neal’s educational vision on our tour that are worth discussing. The first of these is tied to his belief that the curriculum should in part arise from questions that children raise about their world. Early on in his career as a science teacher, Neal decided that restricting instruction to textbook experiments people already knew the answer to is a recipe for disengagement and boredom. What is critical instead is acquainting students with the value of raising questions that can be answered through the systematic gathering and analysis of data. For elementary school students, he designed a process to convey this understanding.

Students were asked to predict where a rubber-tipped dart shot from a toy gun taped to and stabilized on a tripod would land on a classroom wall. The first stage was to draw a circle that you knew the dart would hit. Some students chose to include the entire wall, absolutely guaranteeing success; others were more precise. Then they conducted the experiment. The next step was to refine their prediction, something that required discussion and decision making. Eventually they found that the gun fired pretty consistently and would hit a point within a three-inch circle. As Neal observed, “What they found was testing is so valuable, getting data, because it makes your answer so much better. So simple. But for fifth grade, it was perfect. It was fun and it was interesting. They’d never gotten to shoot a dart gun in their classroom before.”

With this understanding in hand, Neal would encourage students to then ask questions of things like their watershed and design experiments or procedures aimed at answering them. For example, one day a student said that when he was out hiking with his family, his grandpa said that moss always grows on the north side of the trees. He wondered whether this was right or not. The teacher and class ran with the question and designed a project that involved taking acetate sheets, cutting them the length of the circumference of a tree, pinning them in place after checking and marking the four cardinal directions, and then recording with different colors the location of lichen, moss, and any other growth on the tree. All of this teacher’s classes ended up doing the experiment in a forest close to the school, so there were hundreds of acetate sheets. Once they had all been collected, the sheets were then laid with those on the north side lined up, allowing the students to determine how much moss or lichen grew on different sides of trees in at least this one forested area. What they discovered ended up being published in the Seaside newspaper.

Other questions led students to design experiments aimed at determining what kind of material was falling from trees in the forest. They strung up 10 feet by 10 feet tarps from trees, put a rock in the middle, and then left the tarps alone for 48 hours. They came back and swept everything that had accumulated into the middle and took what they collected back to the classroom. They then examined what was there through a stereoscopic microscope. Neal still gets excited about what they discovered: “That one was mind boggling because the number of insect larvae was shocking. It was amazing that there’s tons of stuff falling out the trees that you don’t see.” The students also wondered about what it is about the soil in a forest that allows it to produce so much vegetative matter. The teacher invited soil scientists into the classroom who taught the students about the constituents of soil, itself. The scientists were followed by a master gardener who helped the kids gather the appropriate materials and make their own soil that was then placed in raised beds. They planted seeds, and the experiment was under way. “The idea was they’d learn the scientific method as a result of trying to get, pry, answers from the landscape.”

Expanding the boundaries of home

Beyond inducting students into the processes that govern their own community, Neal believed that students’ school experiences should ideally lead to a recognition of their home community’s relationship to other towns and cities in their region. As a former football coach, he had been concerned about the way that most interscholastic contact focuses on “beating the crap out of Astoria and all that kind of business.” He wanted students from different communities to recognize the value of learning from and working with one another, as well. On the day I spent with him, he told me of three projects that sought to achieve this end.

Towards the end of the morning, much of our conversation took place at an elementary school on the outskirts of Seaside on a hill up above the tsunami plain. This location was ideal for the educational experiences described above because of the proximity of the forest but also the proximity of Coho Creek, a salmon-bearing stream partly located on school district property that feeds into fresh water marshes and then the salt water marshes where salmon undergo the transition that allows them to become fish capable of living in the ocean. Neal and teachers at the school quickly saw the learning possibilities of this site, turning it into a watershed education center for students from other schools. After learning the ins and outs of the salmon life cycle, Seaside students became watershed guides for fifth-grade students from Knappa and Astoria, towns to the north. For Neal, this kind of opportunity made it possible for students to have experiences that helped them recognize their kinship with peers in other schools in the same region.

The inspiration for the second project was a 1974 issue of Life Magazine that featured photos aimed at telling a story about what happened in the United States over the course of a single day. Neal figured that something similar could be done for the “Columbia Pacific region” stretching from Seaside and Jewell and Warrenton in Oregon up to Ilwaco and Long Beach in Washington. After getting the Daily Astorian to agree to print and publish it, staff from the paper led a workshop that was attended by 74-75 students from the region. The plan was to send these students out for 24 hours on the day of May 4, 1999 to document photographically what they saw happening in their community.   The hope was that they would begin to communicate with one another as citizens of a common region. With their cameras in hand, students found that people gave them acceptance and access as they captured their fellow citizens milking goats, making taffy, cutting trees, docking a fishing boat. Few of the students had ever spent a day in their own community just observing and speaking with people they didn’t know. After this experience, one girl said that “she gave up her old eyes” and had come to realize that she lived in a kind of paradise.   The project turned out to be “monumental” according to Neal, being written up in The Oregonian, the state’s largest paper. It was also selected for a Library of Congress journalism program with which the Daily Astorian was involved.

A project with a similar aim was called “Crossing Boundaries.” It involved students from five middle schools throughout the region who were asked to develop a transect across the entire Columbia River based upon the collection of bottom samples. To do this work, students had to learn how to run a boat in a straight line using GPS equipment across a few miles of river. Mastering this skill this took a couple of days. Then, with a boat captain standing behind them, some of the students kept the boat on course while their compatriots dropped scientific gear into the water and gathered data. The report based on their findings, “New Designs: Youth Voices Building Communities,” touched on important land use planning issues for the region and became the foundation for subsequent investigations, like strategies for protecting beach areas inhabited by sanderlings, a kind of small sandpiper.   What is striking about these projects is their creativity, the depth of learning they elicited, and the meaning they possessed for both student participants and the people throughout their region.

 

CLICK HERE FOR PART TWO

Greg Smith is an emeritus professor who taught for 23 years in the Graduate School of Education and Counseling at Lewis & Clark College.  He’s keeping busy in his retirement serving on the board of the Great Lakes Stewardship Initiative in Michigan and the educational advisory committee of the Teton Science Schools in Wyoming; at home, he’s co-chairing a local committee that is seeking to develop curriculum regarding the Portland-Multnomah County Climate Action Plan.  He is the author or editor of six books including Place- and Community-Based Education in Schools with David Sobel.

Outdoor Learning

Outdoor Learning

NatureBridge Takes the Classroom Outdoors: Inspires Teachers and Students Through Discovery

by Karen West
for NatureBridge

 

“The future will belong to the nature smart… the more high-tech we become, the more nature we need.”
– Richard Louv, author of “Last Child in the Woods, Saving Our Children from Nature-Deficit Disorder’’

 

Jeff Glaser stood at the base of Madison Creek Falls in Olympic National Park, taking in the beauty of the water cascading 76 feet. As he hiked back toward the Elwha River, he recalled his nature-filled childhood, packed with camping, hiking and fishing trips throughout the Pacific Northwest.

He couldn’t help comparing the wilderness adventures of his youth to experiences of today’s generation, many of whom are growing up in an over-scheduled, technology bubble. “I love getting my students off their devices and into the natural environment where they can breathe, stretch and grow,’’ says Glaser, who teaches sixth grade math, science and religion at St. Louise School in Bellevue, Wa.

Glaser was one of more than a dozen teachers participating in a four-day professional  development summer workshop at NatureBridge, an environmental education nonprofit with a campus in Olympic National Park on the shores of Lake Crescent. With environmental science at its core, the workshop was an example of how NatureBridge provides educators with training, resources and curriculum to help prepare their students to be the next-generation of environmental stewards.

The teachers from Washington, Oregon, California and New Jersey spent the week exploring marine and lowland forest ecosystems in Olympic National Park including the lower Elwha River watershed. NatureBridge educators, Olympic National Park assistant superintendent and rangers, and data driven scientists provided insight into how science, technology, engineering, and math skills inform decision making and management of this one million acre park.

In final projects, teachers in the workshop collaborated with their grade-level peers to submit classroom content for publication on the National Park Service’s K – 12 education site. Inspired by his visit to Rialto Beach, Glaser created a lesson plan focused on marine plastics – Where does the debris come from? What happens to it? And how much is generated?

“Many kids today don’t have these experiences – some don’t know their trees or their national parks,’’ says Glaser, whose parents integrated nature into his life-long learning. “It’s not just kids who are missing out on nature experiences. As teachers, we need to step it up and show our students these things.’’

The educational workshop is just one way NatureBridge collaborates with the national park to inspire teachers and students through critical-thinking skills, hands-on scientific research and inquiry-based learning.

OLYMPUS DIGITAL CAMERA

Letting Kids Get Their Hands Dirty

Founded in 1971 as Yosemite Institute, NatureBridge serves over 30,000 young people from more than 700 schools each year at its six national park campuses: the valleys of Yosemite, the watersheds of Washington’s Olympic National Park, the peaks of the Santa Monica Mountains, the marine sanctuary of the Channel Islands, the coastal hills of the Golden Gate National Recreation Area and the piedmont forest of Washington, D.C.’s Prince William Forest.

No matter what grade level or type of school, many of the teachers who go through a NatureBridge program all leave with the same discovery: Kids get excited about environmental science when they are immersed in a living, outdoor laboratory where they can become scientists in the field – and not worry about making mistakes.

“It’s all about discovery,’’ says NatureBridge educator Josh McLean, during a recent Elwha Exploration Day event. He says it’s more important for kids to think about and create questions than answering them correctly, adding that the most rewarding experiences often come when students are feeling out of their comfort zone.

“The struggles build our ability to persevere and find new knowledge,’’ McLean says, throwing in his favorite quote from poet William Blake who once said, “it’s the crooked paths that are the paths of genius.’’

NatureBridge offers three- to five-day residential programs primarily targeting students in grades 4–12. Olympic National Park is a place where kids and adults aren’t afraid to step in the mud. Students get to hold slimy salamanders, hike in an old growth forest or even touch snow for the first time. They walk across the bottom of what used to be a 60-foot deep lake conducting experiments like real-world scientists, touch springboard notches on tree stumps that were cut down 100 years ago and stand on a 210-foot slab of concrete that once was a dam.

“I can’t think of a better way to teach kids about nature,’’ says Stephen Streufert, vice president of education and Pacific Northwest director at NatureBridge. “By letting kids get their hands and feet dirty in outdoor classrooms, students acquire a deeper understanding of their environment and often begin a lifelong interest in science.’’

NatureBridge Changes Lives

Just ask high school senior Marisa Granados, NatureBridge’s 2018 Student of the Year.  Before I had the opportunity to travel to Olympic National Park, I had begun to feel discouraged about the impact I really could make in the world.’’

Inspired by her first school trip to NatureBridge, Granados embarked on a 14-day NatureBridge Summer Backpacking program in 2017 that gave her renewed confidence in her ability to thrive and make a difference: “I was able to gain the confidence to speak up about what I wanted to do with my life. By gaining a stronger relationship with nature and discovering a deeper part of myself, I now see the influence of my actions and the amount of power that I have in creating change.’’

With the support of the U.S. Forest Service, she developed a handbook and curriculum for middle school students to learn and apply environmental stewardship effectively in her home state of New Mexico. She hopes to pursue a career in environmental engineering and outdoor education.

Granados is just one of thousands of students who has worked like a true scientist collecting and analyzing data in the Olympic National Park.

“There’s a mysticism around here that makes everything magical,’’ says Ingraham High School senior Jonathan Mignon on a recent scientific exploration in the Olympic National Park. “This is a place where you get sense of wild, untamed nature that speaks to me. It makes everything more tangible. You’re not only learning it but you’re feeling it.’’

When students hike in the Elwha River watershed, they don’t just hear that obstructions to river passage has changed, they see first-hand that salmon are now able to swim upriver and spawn in cobbled pools miles upriver from where the dams used to be. Students become part of the dam restoration story practicing scientific inquiry and critical thinking to understand complex issues associated with engineered environmental change.

“They think like scientists testing the quality of water, then transform into politicians, activists and concerned citizens engaging in debates about how the river and its salmon are managed,’’ says Streufert.

Students also get first-hand lessons in stewardship. “They learn that, for the Elwha dam removal to be successful, people had to listen, to engage with those they did not always agree with and to ultimately act, with multiple stakeholders and multiple outcomes in mind,’’ says Katie Draude, NatureBridge summer backpacking manager.

Bringing Back the Elwha

The Elwha Valley, where two dams were removed between 2011 and 2014, is a fertile learning environment for educators and students. The Elwha River Restoration Project – to date the largest dam removal in U.S. history – is one of the key areas of study for students visiting NatureBridge’s Olympic National Park campus. The $325 million National Park Service project entailed tearing down the 108-foot Elwha Dam and the nearby, 210-foot Glines Canyon Dam and restoring the river watershed.

Over the last several years, NatureBridge students have literally watched the river be reborn, recording its long and storied history.

The dams, the first of which was built in 1911, served their purpose of fueling regional growth by supplying much-needed electricity for the local timber and fishing industries. Though state laws required that construction of any kind allow for fish passage, both dams were built without it. But in 1992, after years of protest by many local tribes, lobbying and citizen outcry, Congress passed the Elwha River Ecosystem and Fisheries Restoration Act, which authorized dam removals. It took nearly two decades of bureaucratic wrangling before deconstruction began in 2011.

Meanwhile, the damage had already been done. The dams put a 100-year chokehold on migration of salmon just five miles upstream along the 46 mile river, disrupted the flow of sediment and wood downstream, and flooded the historic homelands and cultural sites of the Lower Elwha Klallam Tribe.

In its heyday, the Elwha River was home to one of the largest year-round salmon and steelhead runs of any river on the Olympic Peninsula and supported all five species of Pacific salmon. “People who were riding their horses up the trail just upstream from the river couldn’t cross,’’ Pat Crane, a longtime biologist for the Olympic National Park, told the professional development workshop teachers as they sat on what used to be the bottom of Lake Aldwell. “The horses refused to cross the creek because there were so many pink salmon in the creek.’’

That was in the late 1800s and 1900s, before there was electricity in Port Angeles and when steamboats were the region’s primary means of transportation – and before the dams were built. Back then, Crane estimates an average of 120,000 salmon came back to the river every year to spawn. “But by the time we go around to dam removal, we had between 100 and 200.’’

Today, the river, which flows from its headwaters in the Olympic Mountains to the Strait of Juan de Fuca, is the largest ecosystem restoration project in the National Park Service history – unleashing more than 70 miles of salmon habitat.

In September 2014, the first reported sighting of Chinook in the Elwha River above where the Glines Canyon Dam came down was confirmed, and they have slowly been returning ever since. In fact, as Crane was talking with the teachers during their workshop, he noticed a small stream near the river where dozens of baby salmon were gathering.  “The fish are gambling they will be safe here,’’ Crane told the group. “They are safe for now but if the water dries up or a heron comes by, they could die.”

To kickstart the river’s recovery and help manage a century of accumulated sediment, Forest Service crews are planting 400,000 native plants and more than 5,000 pounds of native seed in the reservoir basins. But biologists say it could take a generation or more to heal.

What if We Taught Baseball the Way We Teach Science

Research shows that environmental outdoor education sparks student interest, helps improve academic performance and builds confidence. A Stanford University study measuring the impacts of environmental education for K-12 students showed that environmental education helps students enhance critical thinking skills, develop personal growth and increase civic engagement.

An educator in the Stanford study commented: “In my 20 years of teaching before using the environment-based approach, I heard, ‘Why are we learning this?  When are we going to finish?’ And now when we are out in the field and sorting macroinvertebrates, for example, I have to make them stop after four hours for lunch. And then they say, ‘We don’t want to!’”

A recent report from the Kaiser Family Foundation found that the average eight to 18-year-old American now spends more than 53 hours a week using “entertainment media”, up from 44 hours five years ago.

“When you think about the pressures of youth today and the kinds of things they are dealing with their families and teachers, their primary interface is screens,’’ Streufert recently told a group of educators, donors and community leaders.“We know that the average time of kids outside on any given day is about seven minutes – that includes structured play (soccer practice) and unstructured play (playing out in the woods).’’

To illustrate the importance of hands-on learning, NatureBridge educator McLean recalls the writings of UC Berkeley professor Alison Gopnik, who believes “children are designed to be messy and unpredictable, playful and imaginative.” In her book, The Gardner and the Carpenter, Gopnik asks, “imagine if we taught baseball the way we teach science.”

McLean says it would go something like this: “In kindergarten or first grade we might bring a baseball into the classroom. You could look at it but not touch it—it might be dangerous… And if you got to the sixth or seventh grade level, now you can roll the ball across the room or perhaps swing a bat as long as you are well away from everyone else. In high school, with close, coach supervision, maybe you have an interview with a famous baseball player or maybe re-enact a play from some famous game. And it’s not until undergraduate level in college that you play a game of baseball. If we taught baseball that way, we would expect to see the same level of success in Little League that we currently see in our science classrooms – it’s not high.’’

In her book, Gopnik answers her question by saying: “learning to play baseball doesn’t prepare you to be a baseball player—it makes you a baseball player.’’

The same is true in environmental education—if you want kids to learn, to be scientists, to be stewards, you must involve them in the process. Take them into the woods, show them the rivers, let them experience the outdoors. These are the moments that will transform them into scientists. These are the moments that will inspire them to care for the natural world—not one day, but now.

# # #

Book Review: Place-based Education

Book Review: Place-based Education

Enlivening Students

 

by Gregory A. Smith

 

Review of Sarah Anderson’s, Bringing School to Life: Place-Based Education across the Curriculum (Lanham, Massachusetts: Rowman & Littlefield, 2017)

or the past two decades, books and articles written by place- and community-based advocates have been largely focused on defining and justifying an alternative approach to teaching and learning grounded in local knowledge and issues with the aim of inducting children into a sense of community participation and responsibility. This literature was largely exhortatory rather than prescriptive. It did not often provide interested teachers with detailed guidelines about how to move from a broad vision to the challenge of creating and enacting curriculum and instruction not limited by either textbooks or even classrooms. These advocates asked teachers to be courageous and take risks, trusting in their capacity to experiment and learn from their failures and successes. And many teachers across the United States and elsewhere became early adopters of this approach, willing to embrace those challenges and risks. As place- and community-based education enters its third decade, however, something more is needed to make its implementation appealing and understandable to a broader group of educators. Sarah Anderson’s Bringing School to Life: Place-Based Education across the Curriculum (2017) provides exactly the kind of guidance required to accomplish this end.

Anderson is a former student of David Sobel, one of the early advocates of this approach. For the past dozen years she has embraced what she learned while studying with him first as a middle-school teacher and now as the fieldwork coordinator at the Cottonwood School of Civics and Science in Portland, Oregon. Anderson’s work is especially powerful because of her concern about citizenship education and democratic practice. Place-based educators often focus primarily on providing students with immersive experiences in nature without necessarily engaging them in the cultural understandings, conflicts, problem-solving, and negotiation that accompany life in civil society. This is not to diminish the importance of those immersive experiences—which can be central to the development of a strong environmental ethic—but in themselves not enough to give young people the confidence or savvy required to become engaged community actors. Anderson’s work exemplifies how this can happen and how schools and communities can truly “get better together.”1

Her volume provides multiple examples of lessons and units she or the teachers she works with have developed and taught. Chapters describe ways that students can use maps to learn about their place, contribute to its human and environmental health through community science, learn directly about local history, partner with nearby agencies and organizations, explore the way different subject areas can be integrated to deepen knowledge and understanding, and develop a sense of connection with and empathy for one another and people beyond the school. The three chapters about mapping, citizen science, and local history provide detailed descriptions of units interested but uncertain teachers could profit from as they begin to incorporate local possibilities into their own work with students; they will be the focus of the remainder of this review.

Maps offer not only a good way to introduce children to their own place but to think about “What is where, why there, why care?”2 They naturally lead students to observe, collect data, and make inferences. At the Cottonwood School maps are integrated into the learning experiences of children at all grade levels. Early in the school year as a welcoming activity, everyone is invited to create and share personal maps of things special to them in their bedroom, home, neighborhood, or someplace away from home. Kindergarteners through second graders then create maps of their classroom and playground, sometimes using blocks and unix cubes to illustrate a space. Third graders map the school focusing on specific features such as sound. Fourth through sixth graders create maps to scale of neighborhood features such as parks and then compare and contrast in writing the data presented in their maps. Sixth graders map nearby features of their own choosing. They walk through the South Waterfront neighborhood and record the location of things like K9 restrooms (fire hydrants), bike racks, and food carts. They then create a formal illustrated map with compass roses and borders (and sometimes sea serpents in the Willamette River) to represent what they have found. Seventh and eighth graders go further afield and focus on the city and state. Given a map of the city’s boundaries and different districts, they identify major bodies of water, traffic routes, and one personally significant place in each district. This leads into a more extensive exercise in which they choose one data set to map. Possibilities include population, temperature levels during a heat wave, city parks, or the location of Starbucks coffee shops. They are encouraged to think about who has access to which resources by comparing demographic maps that focus on race and ethnicity. Maps offer a way to synthesize disparate but related information as well as integrate a variety of subject matter.

The school’s incorporation of community science offers similar opportunities to link lessons to students’ lives and create learning experiences that allow for observation, analysis, and curricular integration. Community science involves identifying local phenomena or issues worthy of study and action and linking these topics to the Next Generation Science Standards. One year, seventh- and eighth-graders identified the problem of animal waste in the neighborhood as an issue they wanted to explore and investigate. As they ventured beyond the school for a variety of learning activities, they found nearby sidewalks both hazardous and smelly. They decided to do something about it. Their teacher divided the class into teams who performed different tasks: one counted all of the pet waste in a six-block radius, another researched the environmental toxins found in dog poop, a third team investigated Portland laws regarding the regulation of pet waste, and a fourth researched similar laws in other cities. Once students had all of this information in hand, they analyzed what they had found and brainstormed possible solutions. They then wrote letters to public officials recommending that the city provide more public education about this problem and enact bigger fines for people who violated laws already on the books. Their letters resulted in a meeting with officials in city hall, and their ideas were incorporated into a “petiquette” campaign that the city had already begun planning. Extended units like these offers students a chance to systematically explore a topic, do so in ways that allow them to see its relevance to their own lives, and then make a contribution to the broader community. Such experiences match the call by framers of the NGSS to apply scientific concepts and practices to real life circumstances.

One of Anderson’s talents lies in her capacity to find ways to make the study of history local, as well. The third grade curriculum, for example, includes a focus on Native Americans. As part of that study, students visited the Oregon Historical Society, Portland State University’s Department of Archeology, and a traditional Chinook longhouse at Ridgefield, a National Wildlife Refuge in Washington State less than an hour from the city. Returning to the school, they transformed their classroom into a longhouse with a “fire pit” in the middle of the room. They also participated in PSU’s Archeology Roadshow where after having learned about the characteristics of meaningful exhibits at the Oregon Museum of Science Industry, they created a longhouse model and became the only K-12 students to share their work at an event otherwise populated with much older presenters. The opportunity to be involved with people beyond the school at PSU or City Hall demonstrates to children that they are as much citizens as anyone else in their community, lending them both a level of confidence and a sense of responsibility too absent in the education of this country’s future adults.

Learning experiences like these are deeply engaging for students. Furthermore, they demonstrate to community members the capacity of children to make genuine contributions to their common life.   Anderson’s book offers a useful and inspiring roadmap for other educators interested in realizing this vision of place-based education themselves.

 NOTES:
1 Tagline for the Rural School and Community Trust, an organization that grew out of the Annenberg Rural Challenge, the first national effort in the 1990s aimed at disseminating the possibilities of place-based education.
2 In Brian Baskerville’s 2013 article, “Becoming Geographers: An Interview about Geography with Geographer Dr. Charles Gritzner (http://geography.about.com/od/historyofgeographty/fl/Becoming-Geographers.htm).

____________________________________________________________________________

Gregory Smith is a professor emeritus of the Graduate School of Education and Counseling at Lewis & Clark College in Portland, Oregon. He has written numerous articles and books about environmental and place- and community-based education. He is a fellow of the National Education Policy Center at UC-Boulder, a member of the education advisory committee of the Teton Science Schools, and a board member of the Cottonwood School of Civics and Science.

 

Empathy and Environmental Education

Empathy and Environmental Education


The Compassionate Educator:
Empathy and Environmental Education

Tom Stonehocker

common challenge in environmental education is working with students who feel disconnected from their environment. This disconnection not only impedes a student’s ability to understand how natural systems function, it also affects how they value the natural world. This is caused not necessarily from lack of education, but the lack of focus on types of learning that build social-emotional skills in students.

Environmental work is inherently about responding to the needs of a changing planet. Environmental education must also continually focus on responding to the needs of our students so that they can grow to do the same for others. The study of nature is the study of relationships, and we would be wise to include ourselves in that definition, and perhaps even more importantly, those around us.

Author and educator Joseph Cornell shares that, “Our enjoyment and appreciation of life depends on our ability to sense feelings of other creatures, escaping our self-definitions to taste the joy of self-forgetful empathy with others” (Cornell, 1998, p.33). If young people are not well practiced in putting themselves into perspectives outside of their normal selves, how can they be expected to understand and care for the natural world?

Through my own reflections and experience as a field instructor at Islandwood, “a school in the woods”, located in Washington state, I have witnessed the value of being able to take on other perspectives. By adopting new points of view, we are better able to make informed and meaningful connections with ourselves, with others, and with our environment. As educators, the opportunites we provide our students largely do not come from the knowledge we can impart, rather our ability to engage students in experiences that speak to where they are coming from in life. To teach in this way, we must be willing to step out of our own experience from time to time and into the experiences of others in our community. Fortunately, with practice and thoughtful action, empathy can be used to increase the impact of our teaching.

Beyond Egocentrism

In Coyote’s Guide to Connecting with Nature, the authors describe a progression toward empathy that begins as students learn to recognize and express their own needs. “Over time and with your encouragement, they will go beyond asserting their needs into taking responsibility for them and being proactive about them” (Young, Haas, and McGown, 2010, p. 268). This growing sense of responsibility might be observed in simple acts, like noticing a student plan ahead by bringing warm and dry clothing. It might be a student who articulates that they are uncomfortable with a certain aspect of an activity and opens a conversation to plan an alternative.

Young, et al. go on to describe how this behavior often expands into a greater awareness of others and tending to their needs as well (2010). I have witnessed this progression in my students as I see them begin to speak up for each other. Students also feel more comfortable affirming the positive attributes that their peers bring to the group, and begin to feel a sense of comradery and pride with group identity.

“This same tending sensibility will also show itself as care for the natural world -and especially one’s own native romping grounds” (Young, et al., 2010, p. 268). In watching how self-care can grow into caring for others, it’s easy to imagine this expanding beyond just people and encompassing the environment as well. Developing a sense of place begins when a person starts to have deeper familiarity with their surroundings, and ultimately begins to feel at home where they are. Feeling a sense belonging is a true testament to the number and quality of the relationships built.

Helping Students to Cultivate Empathy

An important way to help a group of students begin to see from perspectives other than their own is by helping each individual realize the interconnectedness present within a community. One way to encourage this sense of interpersonal connection is by engaging them in team-building challenges. Of course there are millions of activities that achieve this—I’ve seen wonders happen when I challenge group of ten students to transport themselves 25 feet across an expanse of “shark-infested hot lava” using only four foam seat-pads as stepping stones. They become invested in a successful outcome for the group and along the way, they discover the role that each person plays and how they can more carefully and effectively communicate with one another.

These types of play-based collaborations have helped groups of students with intense trust and interpersonal challenges to become significantly more community-minded and thoughtful of each other’s needs. Sometimes, we must recognize that there is more work than can be achieved in our time together with students, but we must not let that stop us from trying.

One of my favorite activities to facilitate with students to dive even deeper into empathy is to engage them in storytelling from the perspective of a non-human element of the natural world. Students get to create their own narrative, which could be a short story, poem, or comic about any living or nonliving component found in our place.

One memorable story came from a student who, after having trouble coming up with ideas for his story, eventually wrote a beautiful piece about a plant he had learned about earlier in the day, the Evergreen Huckleberry:

One time there was [an] Evergreen Huckleberry. People and animals came every second to take the berry. A bird comes and make a house out of you, but the evergreen huckleberry can’t do nothing. So every time it grows [berries], people or animals take it. The tree was mad…because they were eating its berry. It [wanted] revenge and a 10-year-old kid came and said, ‘Stop, we were not hurting you, we were only [taking] berries because it taste good and we take out the seeds and grow another tree. No big deal.’”

Another student wrote from the perspective of a Salal plant that lives through the challenges of each season and ultimately feels unwanted by the other members of the forest community. She wrote,

“A small blueberry tree [looked] at me and said, ‘Salal you are great just like you are. You don’t need to be bigger and we need you. We need you, like you have very [delicious] and sweet [berries] and animals need you. Look, the [deer] needs you for your [berries].’ Salal said ‘Cool, I’m special.’”

In both of these stories, students are demonstrating their understanding of ecological relationships but also have some compelling themes of personal struggle. Both stories have moments when the main character is feeling underappreciated until another member of the community shows them they are valued. People of all ages struggle with self-confidence or feeling like an outsider. These stories illustrate how students can identify threads of connection across boundaries. This helps them develop new interpretations of environmental relationships andf also interpersonal relationships.

Another strength of perspective storytelling is that it helps students to view the natural world through a creative lens, and allows them to do so on their own terms and in their preferred medium. The perspective storytelling activity I shared with my students involved writing, but perspective storytelling can be done with singing, rapping, dancing, acting, or any other interpretation. By giving them flexibility in how they complete the activity, students will be more successful in reaching the goals of connecting with place and practicing empathy.

Showing Students We Care

Environmental and outdoor education inherently provides experiences that are new and often uncomfortable for students. Some students have spent very little time outdoors, some are away from their families for the first time, and some are working with people they don’t know very well. It is a vulnerable time for many, and often students’ interpersonal and intrapersonal challenges are placed secondary to content. The best way we can teach empathy is by practicing it ourselves.

I frequently encounter students with anxiety from being away from home. It is incredibly difficult for a student to experience the wonders of nature when they are in tears and sick to their stomach from being anxious. I approach these students by thinking about where I was at 10 years old. I remember being at outdoor school being unable to sleep, staying up at night crying, and feeling so alone in my discomfort. By stepping into the shoes of my 10-year-old self, I am better able to help students feel like they are being heard and help them persist through their challenges. I acknowledge the difficulty and pain, but remind them of the ways in which I’ve watched them succeed during our time together.

Being empathetic toward students also helps us as educators be more responsive to diverse groups of students. Something as seemingly straightforward as writing in a nature journal may cause great stress for an English Language Learner or a student with different learning abilities. It’s important for us to assess how we are connecting with our students, because it ultimately affects how they will be able to connect with the natural world

Many educators feel constrained when their curricula is focused on meeting state and national achievement standards. Some may not realize that NGSS (Next Generation Science Standards) was designed to improve the equity of science education and serve diverse populations and learners (Quinn, 2015). At its core, NGSS help students explore concepts that are applicable across many different scales and subjects.

It is precisely this adaptability to a broad range of learners that demonstrates how integral empathy is in science teaching. An important tenet of NGSS is to create an environment where students feel at home and are “welcomed as full members, and invited to share their ideas and participate fully” (Quinn, 2015, p. 16). Reaching this place of comfort will happen after learning to be appropriately responsive to the needs of the students. Getting there could be as simple as providing opportunities for movement within lessons, inviting them to incorporate personal or family stories as part of the activity, or by keeping the focus on experience rather than outcome.

Making content more relevant to student lives can help concepts feel less abstract and more tangible. Kathy Liu Sun (2017) suggests incorporating guests to share their perspective and speak from experience. Hearing from voices that students can identify with helps add personal meaning and relevance. When learning is rooted in the experiences of real people and real places, students will recognize the authenticity and be more able to make connections back to themselves, their families, and their communities.

Being There

In her 2012 novel, Wonder, R.J. Palacio writes, “It’s not enough to be friendly. You have to be a friend” (p. 312). I interpret this to mean that we can treat others with kindness, but it means little if we are not working towards creating a meaningful relationship. In environmental education, we must prioritize relationship-building if we are to truly show that we care for future generations and the planet. By being present and attentive to student needs, we can help them cultivate a rich and meaningful connection to nature. By helping create these relationships, we are helping to create a future where people are fully invested in and advocate for the wellbeing of their natural and human communities.

Tom Stonehocker is a naturalist, graduate student, and field instructor who works with 4th & 5th-grade students at Islandwood, an outdoor school on Bainbridge Island, Washington.

References:

Cornell, Joseph. (1998) Sharing Nature With Children. Nevada City, CA: DAWN Publications

Palacio, R. J. (2012). Wonder. New York: Knopf

Quinn, Helen. (2015) Science and Engineering Practices for Equity. In NGSS for All (pp.7-18). Arlington, VA: NSTA

Sun, Kathy Liu. (2017) The Importance of Cultivating Empathy in STEM Education. In Science Scope. April/May. Pp. 6-8.

Young, J., Haas, E., and McGown, E. (2010) Coyote’s Guide to Connecting with Nature. Shelton, WA: OWLink Media.