E.E.’s Philosopher King

E.E.’s Philosopher King

Photo courtesy of Mike Brown.

Not One More Cute Project for the Kids:

Neal Maine’s Educational Vision

 

by Gregory A. Smith
Lewis & Clark College, Professor Emeritus

PART ONE

eal Maine, now in his late-70s is an iconic figure for many environmental educators in the state of Oregon. Early in his teaching career in Seaside, he decided to shelve the textbooks in his biology classroom and base his teaching practice on the premise that “If we couldn’t do it, we weren’t doing it.” He then focused on getting his students outside onto the beach and into the estuaries of the northern Oregon coast as well as onto their city streets and into public meetings, believing that the way to stimulate deep engagement on the part of his students required personalizing what they were learning by designing educational experiences characterized by immersion, involvement, and meaningfulness.

Central to Neal’s approach is a belief that functional communities provide the authentic curriculum that should occupy the attention of educators and their students. The job of the teacher is to create experiences that provide young people with the opportunity to access the processes that make a community work. Also central is Neal’s belief that students are among a community’s most valuable intellectual resources. As he observes, “Where else in the community can you get 20 or more people in the same room that can do calculus?” Instead of teachers seeing their task as getting students ready to do something in the future, they ought to be engaging them in work and experience that is valuable to the community right now.

I first met Neal in the mid-1990s on a visit organized by my Lewis & Clark College colleague, science educator Kip Ault.   Over the previous few years, Kip had worked with Neal in a variety of capacities and they had become friends. Well aware of my interest in environmental and ecological education, Kip figured I needed to get to know more about what Neal was up to.

The thing I remember most about that first meeting was Neal’s commitment to inducting children into the processes that citizens able to support a democracy need to know. He asserted that just as supportive strategies are put into place to teach kids how to play baseball (t-balls, pitching machines, smaller diamonds, fewer innings), similar supports and experiences ought to be used to teach young people how to be citizens. With regard to baseball, children learn how to play the sport not by reading about it but by getting on a baseball field and pitching, throwing, catching running, and making sure players on the opposing team are called out. The same kind of learning in context should happen in their community. To that end, he had overseen the development of memoranda of agreement with the city and county to tap children’s energy and expertise for community projects.

What I learned from Neal profoundly shaped my thinking about place- and community-based education and the impact that treating children as the citizens they are right now rather than in the future could have on both educational practice but also their civic practice as grownups. Neal claims that the most important thing children can offer to public dialogue is the fact that they aren’t adults; their thinking has not yet been fenced in by convention and conformity, and they have the capacity to offer fresh insights, creative solutions, and energy to the life of their community. Given my concerns about the link between schools and sustainability, I felt as though I had hit the jackpot.

Photo courtesy of Mike Brown.

Other people concerned about similar issues felt the same way after meeting Neal. When Paul Nachtigal, a widely respected expert in rural education from Colorado and the president of the Annenberg Rural Challenge, a national effort in the late 1990s aimed at helping schools and communities get better together, heard of Neal’s work, he quickly enlisted him as a board member of what was then a fledgling organization. I recently stumbled upon the business card Neal gave me when we first met, and it focused on this institutional association. I didn’t know anything about the Rural Challenge at the time, but I subsequently became a board member of the Rural School and Community Trust, the organization it morphed into after the initial funding from the Annenberg Foundation came to an end in the early 2000s. Both the Rural Challenge and then the Trust were advocates for place-based education and provided important support for early adopters of this approach, an approach influenced in important ways by the work Neal had been imagining and then enacting from Cannon Beach, Oregon to Long Beach, Washington.

In the summer of 2013, Neal invited me to spend another day with him at the coast to acquaint me with some of the projects that represented the essence of his work as an educator. As he mentioned at the time, he didn’t know how much longer he’d be around, and he wanted to make sure that some of his ideas outlasted him. He hoped that deepening my own knowledge about things he’d done and helped start would increase the likelihood that this might happen. To that end, I recorded our conversation as we traveled from site to site thinking that it might eventually make its way into an article. A mutual acquaintance of Neal’s and mine, Sylvia Parker (formerly a Rural Challenge steward and now an education professor at the University of Wyoming), helped get the five-hour recording transcribed, and I finally got around to rereading, coding, and analyzing what was shared that day in the spring and summer of 2018. Larry Beutler at Clearing Magazine expressed a willingness to publish what I was able to distill, and I set myself the task of trying to capture some of the central principles that undergirded Neal’s work in the hope that other Pacific Northwest educators might continue experimenting with some of the practices that have inspired me and many others both here and elsewhere for years.

In addition to his work as a biology teacher and football coach at Seaside High School, Neal spent more than a decade supporting teachers interested in adopting his out-of-classroom approaches after being requested to do so by the superintendent of the local school district. His impact on students—often those he described as being too creative to plow through the regular curriculum—had not gone unnoticed. They sought out his classes because “they had heard rumors that you got to do something there” and wanted to be part of the action. What they got to do had really meaning and purpose. While on the surface their work could be seen as little more than a “cute project,” what was actually happening went far deeper. They were being shown that their voices mattered and that their community could be made better if they spoke up and got involved. The following collection of place- and community-based learning experiences are emblematic of the educational vision Neal nurtured in the district.

 

A Compendium of Educational Experiments

Little Pompey Wetlands. Little Pompey Wetlands is located just a few blocks from the town center of Cannon Beach, a resort community nine miles south of Seaside. Somewhat more than two decades ago the city was interested in developing a nature trail for residents and tourists in the vicinity of the wastewater treatment facility and had hired a consultant to assist in this project. Aware of this effort, Neal approached the city manager about whether students might be able to participate in some aspect of this work as a means of honoring the memorandum of agreement that called on city and county agencies to make use of students whenever possible.   The city manager was interested; Neal then found a teacher willing to rework her spring curriculum so that many of its goals could be met through the project. They presented their plan to the board, gained permission to proceed, and then with the students decided to create a sign about the wetlands and its species that could be shared with visitors.

This project required not only gaining knowledge about wetlands ecology in general and the variety of plants and animals found in the area (including birds such as red-winged blackbirds, shovelers, eagles, and fox sparrows, and during the winter, an occasional coyote or Roosevelt elk) but also the tasks of writing the text for the sign, naming the wetlands, overseeing the spending of $2000 allocated for the sign’s production and development, shaping and assessing the work of the artist hired to realize their vision, and selecting a sign maker to produce it. In most conventional classrooms, this process would have stopped with knowledge acquisition and most often a test or perhaps individual or group reports. In this instance, students not only had to collectively determine the most critical information to display; they also needed to act as a citizen committee responsible for the wise use of public dollars and as the employer of adults who had contracted with them to fulfill specific services. A project like this treats students as the citizens they already are and gives them the opportunity to practice decision-making skills generally reserved for adults, a task few people, regardless of age, have been prepared for in school.

Naming the wetlands introduced a whole new realm of adult activity when students and their teacher learned they couldn’t simply give a name to a wetlands but had to go through a complex legal process. Investigating other wetlands in Oregon, they could find none that had been named after a child. An earlier unit had acquainted them with Sacajawea and the Lewis & Clark Corps of Discovery; they decided to honor her infant son Little Pompey by naming the wetlands after him. Their commitment to a name they had chosen themselves propelled them through the legal requirements of the state and introduced them to processes often required to accomplish meaningful work in a community.

Democracies depend on the capacity of citizens to engage in civic life in these ways. Not uncommonly, the knowledge required to do so is limited to people whose parents understand the rules of public participation since these skills and insights are not made available to the general population in any systematic way. By giving school children the chance to acquire such knowledge and skill, educators like Neal Maine are inviting a broader group of people into the decision-making process and cultivating in them the ways of thinking, speaking, and acting needed to accomplish tasks they believe to be important.   More than simple participation in marches and demonstrations, as important as these activities might be, “this is what democracy looks like.”

Friends of Haystack Rock. Central to Neal’s educational approach is its emphasis on the value of finding ways to situate learning experiences outside the school in the community or region, and in some instances creating new institutional structures to accomplish this end. Fittingly, the next part of our tour took us to a bluff overlooking the beach beside Haystack Rock, Cannon Beach’s geological claim to fame. Scores of people were clustered in small groups on the sand, looking through viewing scopes, examining displays on tables, listening to presentations. Neal explained that what I was seeing was the work of staff and volunteers at the Friends of Haystack Rock, an organization that has a cooperative agreement with the city to provide interpretive services to locals and tourists interested in learning more about the natural features of the area. Special attention is directed to the lowest tides of the year during the spring and summer when the marine gardens surrounding Haystack Rock are more accessible.

In existence now for more than 30 years, Friends of Haystack Rock grew out of Sea Week, a project Neal had started in the 1980s. During Sea Week, regular classes were suspended and students from throughout the school district would make presentations to the public about projects they had completed related to their home environment with the aim of preserving and protecting it.   Sea Week as it was implemented then no longer exists, but the Friends of Haystack Rock essentially provides the same kind of educational experiences but over a more extensive period of time with the support of volunteers, many of whom are young adults. Its volunteers also become the teachers of the community’s children about marine resources, offering programs both in classrooms and then on the beach. Although the school district ended up not supporting this effort over the long-term, its advantages were apparent to city leaders and an ongoing collection of volunteers who have sustained it now for three decades. Given the fickle and short-lived nature of many educational reforms, organizations like the Friends of Haystack Rock offer a way to perpetuate educational experiences aimed at enhancing the public’s knowledge about their region.

Coastal Studies and Technology Center. For ten years, the Coastal Studies and Technology Center, located at Seaside High School, offered another way to strengthen the relationship between the school and community. Under the leadership of science and technology teacher Mike Brown, students were able to get course credit for engaging in research projects requested by either the city or even federal agencies like the Environmental Protection Agency. The Center provided the workspace and intellectual support that allowed students to contact resource people at the police department, the local hospital, or other governmental offices. One group of students, for example, investigated the economic impact of the Seaside youth riots that occurred over three Labor Days in a row in the early 1960s. I accompanied another group of Upward Bound students working through the Center one summer day in the early 2000s as they mapped the location of woody debris in the Neawanna estuary. Using GIS equipment, they tagged and identified the location of the debris, data that were later recorded on maps of the area that would be used to preserve and enhance salmon habitat.

The Center functioned as a non-profit entity within the context of the school. Its success in pursuing grant dollars and its independence from traditional decision-making structures in the district, however, led to the imposition of constraints that eventually resulted in a narrowing of its focus to technology education. Still, for several years it demonstrated the way that an organization that treats young people as researchers and actors rather than passive recipients of knowledge passed down by others can create engaging learning experiences and do so in ways that benefit others.

Earth Odyssey. Neal was also instrumental in encouraging two fourth grade teachers at the elementary school in Gearhart, a small town just north of Seaside, to collaborate on the creation of a curriculum grounded in the history and natural phenomena of the north Oregon coast. Modeled on a summer camp program called Sunship Earth, the teachers ended up naming their year-long educational adventure, Earth Odyssey. The day of my tour, we met over lunch with Jan Weiting, who had taught in this program for three years. The work of Jan and her partner Larry Nelson exemplify ways that Neal’s vision can be incorporated into the classroom over the course of an entire year. Students’ work in the fall, for example, started with a study of entomology. They moved on from there to the archeology of the North Coast and the Indians who have lived in the area for over 10,000 years, Lewis and Clark’s experience of spending the winter at Fort Clatsop a dozen miles north of the school, and then on to the mountain men and the Oregon Trail. Nearly all of the traditional subjects could be taught through these broad topics tied into the district-prescribed curriculum for fourth graders. Over and beyond this curriculum, students planted trees that are now a small forest outside their portable classroom, painted a mural on one of the building’s walls, and dug and planted a pond. After school Jan and Larry would take smaller groups of interested students on additional field trips to investigate things like sea kelp or to lend a hand with conservation projects, learning activities that brought them recognition as conversation educators of the year by the US Department of Agriculture.

An especially significant activity involved the annual publishing of the Coastal Geographic, a collection of student writing based on interviews with local characters like a famous clam digger. As Neal observed, “The interviews of the people were just so personal and written in such a way that only a kid could talk about, the ordinariness of a person as opposed to the world record they just set.” Although only published for three years, the Coastal Geographic served as a model for the Neawanna Journal, a project that was adopted by a high school teacher who worked with students who were potential dropouts. The students interviewed people who had been born on the Neawanna River in the 1900s, took photos, and wrote up their stories. Their efforts won them an award from the library delivered at a public reception. Neal remarked that “The kids had so much ownership, it was just fabulous.” He added, however, “What sense does this make to have to be so bad at school that you get to produce something that the people who are really good [at school] wouldn’t have a chance at?”

Other Neal-inspired learning experiences. During his years as a teacher support staff in the Seaside School District, Neal found many ways to provide similar instructional opportunities to a broad range of students. One year a group of seventh-grade teachers approached Neal about helping them get funding to take students from their health classes to Portland to see the “plastic lady” at the Oregon Museum of Science and Industry and learn more about bodily systems. Neal persuaded them to pursue a less expensive and potentially more productive idea—a health fair the students would put on for senior citizens in which student groups would be responsible for running booths focused on physical systems like digestion or circulation or respiration. Willing to try out this idea, teachers enlisted the support of staff at the hospital to instruct students and provide equipment like respirators and blood pressure machines they could legally use with people who visited their booths. A day was then set aside for the fair, advertising went out to the public, and arrangements were made to hold the event at the senior citizens center. The fair ended up being well attended by community elders interested in helping the kids. When Neal heard one of the older teachers saying “It’s the first time I’ve ever really enjoyed seeing kids fight,” he asked about what she was talking about. She said. “They were fighting over whose turn it was to do the test next.”

Another year, a seventh-grade social studies teacher got in touch with Neal about a project he had in mind that was not much different from the trip to see the “plastic lady.” Neal explored ways that he might do something that required more involvement, and together they proposed to the Seaside City Council that students audit the decades-old city charter, something the mayor didn’t even know existed. Drawing on the six career themes that were then central to the Oregon’s educational reform—industry and engineering, natural resources, human resources, health services, arts and community, and business and management—the teacher had each of his six classes take on one theme and compare what was written in the charter to what the city was currently doing. The students early on realized they’d need support to do credible work, so they designed a resource list of people they then invited to their classes.   They went on site visits and synthesized what they were learning into a presentation.

At the end of the term, the mayor called the city council to order in the middle school gymnasium. With 137 people in attendance, it ended up being one of the largest city council meetings in the history of Seaside. As Neal remembered, “The kids started going to the microphone and presenting their audit results. Some of them were pretty harsh.” The school district, in particular, came in for some major criticism for its failure to spend the required one percent of money allocated for building projects on public art. The students noted that not one dime had been spent on art during a recent $7 million remodeling effort, something that shocked them after documenting the art works that had been incorporated in other local city and state building projects.

On earlier visits with Neal I’d learned about similar projects taken on by teachers and students from elementary school to high school that gave children and youth the opportunity to do school work that showed them what it means to be an involved citizen. Fourth graders one year visited a number of the parks in Clatsop County and then made recommendations about new playground equipment during one of the public meetings of the parks commission. Middle school science students did a species survey at an old mill site the city hoped to turn into a public park with federal urban renewal funding. High school pre-calculus students used trigonometry to determine the dimensions of all of the buildings on the tsunami plain so that emergency planners could use new software to determine the impact of smaller and larger tidal waves. Another group of fourth graders surveyed their families and neighbors about whether they changed the batteries in their smoke detectors when daylight savings time comes to an end in the fall. The possibilities for investigations like these are nearly endless; all it takes is the willingness of teachers to be alert to them and for community organizations to value and then make use of the intellectual resource provided by public school students.

Asking/answering questions of the world

Beyond inducting children and youth into the processes by which a community governs and cares for itself, I learned about two other elements of Neal’s educational vision on our tour that are worth discussing. The first of these is tied to his belief that the curriculum should in part arise from questions that children raise about their world. Early on in his career as a science teacher, Neal decided that restricting instruction to textbook experiments people already knew the answer to is a recipe for disengagement and boredom. What is critical instead is acquainting students with the value of raising questions that can be answered through the systematic gathering and analysis of data. For elementary school students, he designed a process to convey this understanding.

Students were asked to predict where a rubber-tipped dart shot from a toy gun taped to and stabilized on a tripod would land on a classroom wall. The first stage was to draw a circle that you knew the dart would hit. Some students chose to include the entire wall, absolutely guaranteeing success; others were more precise. Then they conducted the experiment. The next step was to refine their prediction, something that required discussion and decision making. Eventually they found that the gun fired pretty consistently and would hit a point within a three-inch circle. As Neal observed, “What they found was testing is so valuable, getting data, because it makes your answer so much better. So simple. But for fifth grade, it was perfect. It was fun and it was interesting. They’d never gotten to shoot a dart gun in their classroom before.”

With this understanding in hand, Neal would encourage students to then ask questions of things like their watershed and design experiments or procedures aimed at answering them. For example, one day a student said that when he was out hiking with his family, his grandpa said that moss always grows on the north side of the trees. He wondered whether this was right or not. The teacher and class ran with the question and designed a project that involved taking acetate sheets, cutting them the length of the circumference of a tree, pinning them in place after checking and marking the four cardinal directions, and then recording with different colors the location of lichen, moss, and any other growth on the tree. All of this teacher’s classes ended up doing the experiment in a forest close to the school, so there were hundreds of acetate sheets. Once they had all been collected, the sheets were then laid with those on the north side lined up, allowing the students to determine how much moss or lichen grew on different sides of trees in at least this one forested area. What they discovered ended up being published in the Seaside newspaper.

Other questions led students to design experiments aimed at determining what kind of material was falling from trees in the forest. They strung up 10 feet by 10 feet tarps from trees, put a rock in the middle, and then left the tarps alone for 48 hours. They came back and swept everything that had accumulated into the middle and took what they collected back to the classroom. They then examined what was there through a stereoscopic microscope. Neal still gets excited about what they discovered: “That one was mind boggling because the number of insect larvae was shocking. It was amazing that there’s tons of stuff falling out the trees that you don’t see.” The students also wondered about what it is about the soil in a forest that allows it to produce so much vegetative matter. The teacher invited soil scientists into the classroom who taught the students about the constituents of soil, itself. The scientists were followed by a master gardener who helped the kids gather the appropriate materials and make their own soil that was then placed in raised beds. They planted seeds, and the experiment was under way. “The idea was they’d learn the scientific method as a result of trying to get, pry, answers from the landscape.”

Expanding the boundaries of home

Beyond inducting students into the processes that govern their own community, Neal believed that students’ school experiences should ideally lead to a recognition of their home community’s relationship to other towns and cities in their region. As a former football coach, he had been concerned about the way that most interscholastic contact focuses on “beating the crap out of Astoria and all that kind of business.” He wanted students from different communities to recognize the value of learning from and working with one another, as well. On the day I spent with him, he told me of three projects that sought to achieve this end.

Towards the end of the morning, much of our conversation took place at an elementary school on the outskirts of Seaside on a hill up above the tsunami plain. This location was ideal for the educational experiences described above because of the proximity of the forest but also the proximity of Coho Creek, a salmon-bearing stream partly located on school district property that feeds into fresh water marshes and then the salt water marshes where salmon undergo the transition that allows them to become fish capable of living in the ocean. Neal and teachers at the school quickly saw the learning possibilities of this site, turning it into a watershed education center for students from other schools. After learning the ins and outs of the salmon life cycle, Seaside students became watershed guides for fifth-grade students from Knappa and Astoria, towns to the north. For Neal, this kind of opportunity made it possible for students to have experiences that helped them recognize their kinship with peers in other schools in the same region.

The inspiration for the second project was a 1974 issue of Life Magazine that featured photos aimed at telling a story about what happened in the United States over the course of a single day. Neal figured that something similar could be done for the “Columbia Pacific region” stretching from Seaside and Jewell and Warrenton in Oregon up to Ilwaco and Long Beach in Washington. After getting the Daily Astorian to agree to print and publish it, staff from the paper led a workshop that was attended by 74-75 students from the region. The plan was to send these students out for 24 hours on the day of May 4, 1999 to document photographically what they saw happening in their community.   The hope was that they would begin to communicate with one another as citizens of a common region. With their cameras in hand, students found that people gave them acceptance and access as they captured their fellow citizens milking goats, making taffy, cutting trees, docking a fishing boat. Few of the students had ever spent a day in their own community just observing and speaking with people they didn’t know. After this experience, one girl said that “she gave up her old eyes” and had come to realize that she lived in a kind of paradise.   The project turned out to be “monumental” according to Neal, being written up in The Oregonian, the state’s largest paper. It was also selected for a Library of Congress journalism program with which the Daily Astorian was involved.

A project with a similar aim was called “Crossing Boundaries.” It involved students from five middle schools throughout the region who were asked to develop a transect across the entire Columbia River based upon the collection of bottom samples. To do this work, students had to learn how to run a boat in a straight line using GPS equipment across a few miles of river. Mastering this skill this took a couple of days. Then, with a boat captain standing behind them, some of the students kept the boat on course while their compatriots dropped scientific gear into the water and gathered data. The report based on their findings, “New Designs: Youth Voices Building Communities,” touched on important land use planning issues for the region and became the foundation for subsequent investigations, like strategies for protecting beach areas inhabited by sanderlings, a kind of small sandpiper.   What is striking about these projects is their creativity, the depth of learning they elicited, and the meaning they possessed for both student participants and the people throughout their region.

 

CLICK HERE FOR PART TWO

Greg Smith is an emeritus professor who taught for 23 years in the Graduate School of Education and Counseling at Lewis & Clark College.  He’s keeping busy in his retirement serving on the board of the Great Lakes Stewardship Initiative in Michigan and the educational advisory committee of the Teton Science Schools in Wyoming; at home, he’s co-chairing a local committee that is seeking to develop curriculum regarding the Portland-Multnomah County Climate Action Plan.  He is the author or editor of six books including Place- and Community-Based Education in Schools with David Sobel.

E.E.’s Philosopher King (Pt 2)

E.E.’s Philosopher King (Pt 2)

Photo courtesy of Mike Brown.

Not One More Cute Project for the Kids:

Neal Maine’s Educational Vision

 

by Gregory A. Smith
Lewis & Clark College, Professor Emeritus

 

PART TWO
(see Part One here)

Sustaining Neal’s Place-Based Vision of Education: Lessons Learned

Despite the power and attractiveness of these educational practices, few of them remain in evidence after the close to 20 years since Neal retired and started devoting his time to land conservation and nature photography, one of the reasons he sought me out to document central elements of his work in Seaside and the north coast. He is thus well aware of the difficulty of institutionalizing teaching approaches that run contrary to the direction embraced by most contemporary schools. Part of the reason behind this outcome might be related to the way this dilemma is framed in dualistic terms. Rather than seeing the implementation of Neal’s vision as an either-or proposition, a more productive strategy might be to adopt a both-and perspective and then find ways that more of the kinds of things that Neal encouraged could become part of the mainstream educational agenda, not replacing what is now familiar and widely accepted but balancing this with an approach capable of generating higher levels of student engagement, ownership, and meaning. To that end, here are six lessons I take from what I’ve learned from Neal over the years:

  1. Give as much priority to student questions as to required standards.
  2. Value excited learners as much as competent test takers.
  3. Make as much time for community and outside-of-classroom explorations as the mastery of textbook knowledge.
  4. Create organizational structures that encourage creativity as much as accountability.
  5. Encourage teachers to partner with students as co-learners as much as they serve as their instructors.
  6. Develop teachers as alert to unexpected learning opportunities as they are to curricular requirements.

Give as much priority to student questions as to required standards. Human beings are intellectually primed to investigate questions whose answers are not immediately apparent. Think of the appeal of mystery novels, movies, or television programs, our attraction to riddles, the appeal of crossword puzzles. Although these formats involve no ownership on the part of readers, listeners, or players, they still are capable of eliciting attention and time commitment. Even more powerful are the questions we come up with ourselves. Part of the power of the educational approach Neal encouraged teachers to develop lay in the way he tapped into this human desire. Here’s one more story from the tour as an example of the possible. The students who had been involved in the Pompey Wetlands project at one point got ahold of a tape recorder and oscilloscope and began recording one another’s laughter. They had been studying the sounds and images (on the oscilloscope) of whale songs. They wondered whether their individual laughter would have some of the same recognizable visual features on the oscilloscope as what they had observed with whales. They found that they did and after a time could associate different visual patterns with the laughter of specific students in the classroom. Imagine their fascination at having made this discovery. Such fascination is the stuff of serious learning.

Value excited learners as much as competent test takers. Making time for student questions Is one way to excite learning. Another is to provide the opportunity to do things as well as hear about them or meet people as well as read about them. Part of that doing can be as simple as taking a walk in the woods or planting a garden. Part of it could involve designing an experiment to see whether moss really does only grow on the north side of trees. Part of it could involve participating in a group that sees what’s on the river bottom across a transect of the Columbia River. The possibilities of the doing and the investigating are nearly limitless. Such learning opportunities take advantage of human curiosity and the pleasure our species takes in gaining new skills and competencies. I can imagine some of the stories that children who had learned to keep a boat on straight course across the Columbia must have told their parents when they got home that evening—or what students who participated as photographers in the Day in the Life project shared. Not all learning experiences in school will be as memorable or as exciting as these, but some of them should be and not only on an infrequent basis. Things should be happening in school that fire students’ imaginations and intellects, things that instill in them a desire to learn more. Mastery of information for tests of one sort or another is one the requirements of life in modern societies, and it is a mastery we desire from the experts we turn to when in need of medical, legal, or mechanical services. The demand for such testing is not going to go away. But what ignites deep learning is an emotional connection with different topics, the personalization of learning that Neal sought to spread throughout the Seaside School District, something much more likely to happen by getting kids into the thick of things and engaging them in projects that demand their involvement.

Make as much time for community and outside-of-classroom explorations as the mastery of textbook knowledge. The knowledge found within textbooks is not without value; it is, after all, one of the central tasks of education to transmit culture to the young. At issue is whether this culture is being linked to the lives of children and youth in ways that communicate its significance and meaning. In the past, the authority (and fear) invested in teachers, ministers, and older relatives was enough to ensure the attention of many children to these issues. This is no longer the case in part thanks to the media, to mass culture, and to the weakening of traditional institutions like the family, school, and church. Place-based educators argue that one way to address this issue involves situating learning within the context of students’ own lived experience and the experience of people in their community. When this learning also engages them in the investigation of important local issues and provides them with the opportunity to share their findings with other peers and adults, so much the better. One of the strongest motivators for human participation is the chance to engage in activities that are purposeful and valued by others. Experiences like the health fair described earlier can both encourage involvement and strengthen students’ mastery of the knowledge and skills their teachers are attempting to convey to them. More students, furthermore, seem likely to produce higher quality work when they grasp its social significance and know it will be viewed and examined by community members as well as their teacher.

Create organizational structures that encourage creativity as much as accountability. One of the consequences of the standards and accountability movement since the 1980s has been the tendency on the part of many educators to teach to the test and for their administrators to assess their competence on the basis of students’ scores. School administrators have also become more likely to require teachers to justify the activities they bring into the classroom on the basis of specific curricular aims or benchmarks. Given the degree to which schools, for decades, have failed to adequately prepare non-White and lower income students, accountability structures are clearly needed, but the way they are currently being used has resulted in a narrowing of the curriculum and a reduction in teachers’ ability to respond to learning opportunities presented by either students or community members. Place- and community-based education requires the capacity to improvise and make use of instructional possibilities that present themselves during the school year; these possibilities can’t always be anticipated. Embracing them demands the willingness of teachers to follow interesting leads while at the same time looking for ways that curricular requirements can be addressed by doing so. When schools impose both constraints and reward structures that inhibit this kind of flexibility, fewer teachers become willing to experiment in the way teachers who worked with Neal were able to. School districts can go a long way to encouraging creativity by inviting innovative teachers like Neal to share their expertise with others, either as teachers on special assignment or as members of within-district teams responsible for professional development. Addressing policies that affect daily schedules, the school calendar, and transportation requests can also do much to make learning in the community both possible and accessible.

            Encourage teachers to partner with students as co-learners as much as they serve as their instructors. It is not surprising that teachers feel uncomfortable about venturing into unfamiliar intellectual terrain with their students, something that gaining knowledge about what may be a new or minimally examined place and community will necessarily require. The same thing is true of pursuing questions that aren’t going to be answered by the textbook but demand data gathering and analysis. Teaching in this way involves a certain relinquishment of control and the willingness to trust students to be engaged participants in a process of collective learning. This doesn’t mean that a teacher only becomes a “guide on the side” completely following students’ lead and offering assistance only when needed. The teacher instead becomes a “model learner,” the person in the room with more expertise in knowing how to frame questions, seek out information, assess its credibility, locate appropriate experts, create experiments, organize data and analyze findings, and prepare presentations. There will still be a need for mini-lessons about specific content tied into students’ investigations, but the primary task of a teacher with many place-based units will be—like a graduate school advisor—to demonstrate what it means to be an independent learner committed to uncovering the truth inherent in different situations—just as some of the students attempted to discover whether moss always grows on the north side of trees when they began asking questions of the watershed. Moving into a role like this will be disconcerting for many teachers, but the rewards can be worth their initial discomfort as they find themselves no longer teaching the same thing every year but joining their students in a process of intellectual discovery and knowledge creation.

            Develop teachers as alert to unexpected learning opportunities as they are to curricular requirements. Enacting the previous five suggestions involves cultivating teachers who feel competent enough about their capacity as educators–drawing upon an analogy from the kitchen–to invent new and healthful dishes from ingredients at hand as they do following recipes. Recipes are certainly useful, but the test of an experienced cook is found in what they can create from scratch. Toward the end of our day together, Neal told a story about a storm-felled Sitka spruce in a park just across the street from a local middle school. Neal and a teacher there recognized the learning potentiality of this fallen giant and were able to forestall city employees for a couple of weeks as students conducted a tree necropsy. Especially valuable was the possibility of seeing at ground level the biological activity that goes on at the crown of a mature tree. In many instances, this learning resource would have been seen as no more than a mess to be cleaned up rather than an opportunity for an in-depth and unique scientific investigation. Novice and even experienced teachers need to be exposed to stories like this one that invite them to consider possibilities they may have never or rarely encountered during the course of their own education. Neal recognized that teaching in this way might be more of an art form than something that cab be easily taught but still offered the following guidance: “Don’t sleep on the way to school. Have your brain engaged. Always be looking for opportunities to make it come to life, especially if it’s community based. That really makes it work!”

 

Paying It Forward

My day-long journey through a partial history of Neal Maine’s work in Seaside deepened my understanding of his vision of the possible and at the same time his frustration with how difficult it has been to get many of his good ideas to stick. Early in our conversation he spoke of the way our society’s conventional vision of schooling constrains the education he believes needs to happen if young people are to grow into responsible citizens able to bring fresh and potentially more appropriate ideas to the challenges of living in the 21st century. Rather than asking students to be the passive recipients of information passed on to them by others in an effort to prepare them for adulthood and citizenship, educators need to give children the chance to participate now as data gatherers, knowledge producers, and community participants. As Neal put it, “You ought to exploit someone who is uncontaminated with having the same old answer. . . . How much could you exploit them, so to speak, in a positive, productive, humane, and sincere way? The irony of it is that the effort to exploit that capacity becomes the most powerful preparation possible for a later point in your life cycle which is what we should call adulthood.” This, not the creation of “one more cute project for the kids,” was Neal’s aim when he attempted to stimulate educational innovation in districts along the Northern Oregon and Southern Washington coast and influenced the thinking of rural educators across the United States as a board member of the Annenberg Rural Challenge.

He found that institutionalizing changes like the ones he enacted is not easy. A similar lesson was learned through the Rural Challenge, as well. As a board member of the Rural School and Community Trust I had a chance to be in touch with a number of the schools or districts that had received grants from the earlier Rural Challenge. Without the added resources and the network of support provided by that well-funded effort, it was difficult for teachers and administrators to sustain the work they had accomplished during that five-year period.

Regardless of these difficulties, ideas set in motion during that time are continuing to evolve. One of Neal’s Oregon colleagues, Jon Yoder, played a significant role in shaping the Great Lakes Stewardship Initiative in Michigan that has sought to make environmental stewards out of the state’s children and youth for over a decade. Much of the work done there bears the stamp of Neal’s efforts, affecting over 115,000 students since the program began in 2007 (https://greatlakesstewardship.org/). Across the United States, a survey of place- and community-based educators completed in 2016 surfaced over 150 schools that are retooling their curriculum and instruction in ways that advance the aims Neal pursued in the Pacific Northwest (https://awesome-table.com/-KlsuLBGU0pYWpjFH1uh/view). Many other schools were also surfaced through a project sponsored by the Getting Smart website that has created a blog where teachers have been able to post their own stories about place-based education (http://www.gettingsmart.com/categories/series/place-based-education/). Finally, well-established institutions like Eastern Michigan University (https://www.emich.edu/coe/news/2016/2016-05-10-a-new-wave-of-urban-education.php) and the Teton Science Schools in Wyoming (https://education-reimagined.org/pioneers/teton-science-schools/) are creating teacher education and professional development programs aimed at preparing teachers able to embrace and then deliver learning experiences likely to lead to the forms of participation, citizenship, and community change Neal hoped to engender.

Whether schools on their own will be able to support and sustain innovations like these remains an open question, but the persistence of these ideas and the possibilities they are stimulating seem hopeful. Believing as I do that cultures change more through the telling of stories than bureaucratic manipulation, I encourage readers to have conversations about the work of Neal Maine and his educational vision. Going even further, for those of you who are teachers, try some of these possibilities out in your own schools and communities and see what happens. Then share your experiences with others—both the things that work and those that don’t. Learn from one another. As a tribute to Neal and the future, let’s see how long we can keep these ideas alive and how far we might be able to spread them.

Greg Smith is an emeritus professor who taught for 23 years in the Graduate School of Education and Counseling at Lewis & Clark College.  He’s keeping busy in his retirement serving on the board of the Great Lakes Stewardship Initiative in Michigan and the educational advisory committee of the Teton Science Schools in Wyoming; at home, he’s co-chairing a local committee that is seeking to develop curriculum regarding the Portland-Multnomah County Climate Action Plan.  He is the author or editor of six books including Place- and Community-Based Education in Schools with David Sobel.

Outdoor Learning

Outdoor Learning

NatureBridge Takes the Classroom Outdoors: Inspires Teachers and Students Through Discovery

by Karen West
for NatureBridge

 

“The future will belong to the nature smart… the more high-tech we become, the more nature we need.”
– Richard Louv, author of “Last Child in the Woods, Saving Our Children from Nature-Deficit Disorder’’

 

Jeff Glaser stood at the base of Madison Creek Falls in Olympic National Park, taking in the beauty of the water cascading 76 feet. As he hiked back toward the Elwha River, he recalled his nature-filled childhood, packed with camping, hiking and fishing trips throughout the Pacific Northwest.

He couldn’t help comparing the wilderness adventures of his youth to experiences of today’s generation, many of whom are growing up in an over-scheduled, technology bubble. “I love getting my students off their devices and into the natural environment where they can breathe, stretch and grow,’’ says Glaser, who teaches sixth grade math, science and religion at St. Louise School in Bellevue, Wa.

Glaser was one of more than a dozen teachers participating in a four-day professional  development summer workshop at NatureBridge, an environmental education nonprofit with a campus in Olympic National Park on the shores of Lake Crescent. With environmental science at its core, the workshop was an example of how NatureBridge provides educators with training, resources and curriculum to help prepare their students to be the next-generation of environmental stewards.

The teachers from Washington, Oregon, California and New Jersey spent the week exploring marine and lowland forest ecosystems in Olympic National Park including the lower Elwha River watershed. NatureBridge educators, Olympic National Park assistant superintendent and rangers, and data driven scientists provided insight into how science, technology, engineering, and math skills inform decision making and management of this one million acre park.

In final projects, teachers in the workshop collaborated with their grade-level peers to submit classroom content for publication on the National Park Service’s K – 12 education site. Inspired by his visit to Rialto Beach, Glaser created a lesson plan focused on marine plastics – Where does the debris come from? What happens to it? And how much is generated?

“Many kids today don’t have these experiences – some don’t know their trees or their national parks,’’ says Glaser, whose parents integrated nature into his life-long learning. “It’s not just kids who are missing out on nature experiences. As teachers, we need to step it up and show our students these things.’’

The educational workshop is just one way NatureBridge collaborates with the national park to inspire teachers and students through critical-thinking skills, hands-on scientific research and inquiry-based learning.

OLYMPUS DIGITAL CAMERA

Letting Kids Get Their Hands Dirty

Founded in 1971 as Yosemite Institute, NatureBridge serves over 30,000 young people from more than 700 schools each year at its six national park campuses: the valleys of Yosemite, the watersheds of Washington’s Olympic National Park, the peaks of the Santa Monica Mountains, the marine sanctuary of the Channel Islands, the coastal hills of the Golden Gate National Recreation Area and the piedmont forest of Washington, D.C.’s Prince William Forest.

No matter what grade level or type of school, many of the teachers who go through a NatureBridge program all leave with the same discovery: Kids get excited about environmental science when they are immersed in a living, outdoor laboratory where they can become scientists in the field – and not worry about making mistakes.

“It’s all about discovery,’’ says NatureBridge educator Josh McLean, during a recent Elwha Exploration Day event. He says it’s more important for kids to think about and create questions than answering them correctly, adding that the most rewarding experiences often come when students are feeling out of their comfort zone.

“The struggles build our ability to persevere and find new knowledge,’’ McLean says, throwing in his favorite quote from poet William Blake who once said, “it’s the crooked paths that are the paths of genius.’’

NatureBridge offers three- to five-day residential programs primarily targeting students in grades 4–12. Olympic National Park is a place where kids and adults aren’t afraid to step in the mud. Students get to hold slimy salamanders, hike in an old growth forest or even touch snow for the first time. They walk across the bottom of what used to be a 60-foot deep lake conducting experiments like real-world scientists, touch springboard notches on tree stumps that were cut down 100 years ago and stand on a 210-foot slab of concrete that once was a dam.

“I can’t think of a better way to teach kids about nature,’’ says Stephen Streufert, vice president of education and Pacific Northwest director at NatureBridge. “By letting kids get their hands and feet dirty in outdoor classrooms, students acquire a deeper understanding of their environment and often begin a lifelong interest in science.’’

NatureBridge Changes Lives

Just ask high school senior Marisa Granados, NatureBridge’s 2018 Student of the Year.  Before I had the opportunity to travel to Olympic National Park, I had begun to feel discouraged about the impact I really could make in the world.’’

Inspired by her first school trip to NatureBridge, Granados embarked on a 14-day NatureBridge Summer Backpacking program in 2017 that gave her renewed confidence in her ability to thrive and make a difference: “I was able to gain the confidence to speak up about what I wanted to do with my life. By gaining a stronger relationship with nature and discovering a deeper part of myself, I now see the influence of my actions and the amount of power that I have in creating change.’’

With the support of the U.S. Forest Service, she developed a handbook and curriculum for middle school students to learn and apply environmental stewardship effectively in her home state of New Mexico. She hopes to pursue a career in environmental engineering and outdoor education.

Granados is just one of thousands of students who has worked like a true scientist collecting and analyzing data in the Olympic National Park.

“There’s a mysticism around here that makes everything magical,’’ says Ingraham High School senior Jonathan Mignon on a recent scientific exploration in the Olympic National Park. “This is a place where you get sense of wild, untamed nature that speaks to me. It makes everything more tangible. You’re not only learning it but you’re feeling it.’’

When students hike in the Elwha River watershed, they don’t just hear that obstructions to river passage has changed, they see first-hand that salmon are now able to swim upriver and spawn in cobbled pools miles upriver from where the dams used to be. Students become part of the dam restoration story practicing scientific inquiry and critical thinking to understand complex issues associated with engineered environmental change.

“They think like scientists testing the quality of water, then transform into politicians, activists and concerned citizens engaging in debates about how the river and its salmon are managed,’’ says Streufert.

Students also get first-hand lessons in stewardship. “They learn that, for the Elwha dam removal to be successful, people had to listen, to engage with those they did not always agree with and to ultimately act, with multiple stakeholders and multiple outcomes in mind,’’ says Katie Draude, NatureBridge summer backpacking manager.

Bringing Back the Elwha

The Elwha Valley, where two dams were removed between 2011 and 2014, is a fertile learning environment for educators and students. The Elwha River Restoration Project – to date the largest dam removal in U.S. history – is one of the key areas of study for students visiting NatureBridge’s Olympic National Park campus. The $325 million National Park Service project entailed tearing down the 108-foot Elwha Dam and the nearby, 210-foot Glines Canyon Dam and restoring the river watershed.

Over the last several years, NatureBridge students have literally watched the river be reborn, recording its long and storied history.

The dams, the first of which was built in 1911, served their purpose of fueling regional growth by supplying much-needed electricity for the local timber and fishing industries. Though state laws required that construction of any kind allow for fish passage, both dams were built without it. But in 1992, after years of protest by many local tribes, lobbying and citizen outcry, Congress passed the Elwha River Ecosystem and Fisheries Restoration Act, which authorized dam removals. It took nearly two decades of bureaucratic wrangling before deconstruction began in 2011.

Meanwhile, the damage had already been done. The dams put a 100-year chokehold on migration of salmon just five miles upstream along the 46 mile river, disrupted the flow of sediment and wood downstream, and flooded the historic homelands and cultural sites of the Lower Elwha Klallam Tribe.

In its heyday, the Elwha River was home to one of the largest year-round salmon and steelhead runs of any river on the Olympic Peninsula and supported all five species of Pacific salmon. “People who were riding their horses up the trail just upstream from the river couldn’t cross,’’ Pat Crane, a longtime biologist for the Olympic National Park, told the professional development workshop teachers as they sat on what used to be the bottom of Lake Aldwell. “The horses refused to cross the creek because there were so many pink salmon in the creek.’’

That was in the late 1800s and 1900s, before there was electricity in Port Angeles and when steamboats were the region’s primary means of transportation – and before the dams were built. Back then, Crane estimates an average of 120,000 salmon came back to the river every year to spawn. “But by the time we go around to dam removal, we had between 100 and 200.’’

Today, the river, which flows from its headwaters in the Olympic Mountains to the Strait of Juan de Fuca, is the largest ecosystem restoration project in the National Park Service history – unleashing more than 70 miles of salmon habitat.

In September 2014, the first reported sighting of Chinook in the Elwha River above where the Glines Canyon Dam came down was confirmed, and they have slowly been returning ever since. In fact, as Crane was talking with the teachers during their workshop, he noticed a small stream near the river where dozens of baby salmon were gathering.  “The fish are gambling they will be safe here,’’ Crane told the group. “They are safe for now but if the water dries up or a heron comes by, they could die.”

To kickstart the river’s recovery and help manage a century of accumulated sediment, Forest Service crews are planting 400,000 native plants and more than 5,000 pounds of native seed in the reservoir basins. But biologists say it could take a generation or more to heal.

What if We Taught Baseball the Way We Teach Science

Research shows that environmental outdoor education sparks student interest, helps improve academic performance and builds confidence. A Stanford University study measuring the impacts of environmental education for K-12 students showed that environmental education helps students enhance critical thinking skills, develop personal growth and increase civic engagement.

An educator in the Stanford study commented: “In my 20 years of teaching before using the environment-based approach, I heard, ‘Why are we learning this?  When are we going to finish?’ And now when we are out in the field and sorting macroinvertebrates, for example, I have to make them stop after four hours for lunch. And then they say, ‘We don’t want to!’”

A recent report from the Kaiser Family Foundation found that the average eight to 18-year-old American now spends more than 53 hours a week using “entertainment media”, up from 44 hours five years ago.

“When you think about the pressures of youth today and the kinds of things they are dealing with their families and teachers, their primary interface is screens,’’ Streufert recently told a group of educators, donors and community leaders.“We know that the average time of kids outside on any given day is about seven minutes – that includes structured play (soccer practice) and unstructured play (playing out in the woods).’’

To illustrate the importance of hands-on learning, NatureBridge educator McLean recalls the writings of UC Berkeley professor Alison Gopnik, who believes “children are designed to be messy and unpredictable, playful and imaginative.” In her book, The Gardner and the Carpenter, Gopnik asks, “imagine if we taught baseball the way we teach science.”

McLean says it would go something like this: “In kindergarten or first grade we might bring a baseball into the classroom. You could look at it but not touch it—it might be dangerous… And if you got to the sixth or seventh grade level, now you can roll the ball across the room or perhaps swing a bat as long as you are well away from everyone else. In high school, with close, coach supervision, maybe you have an interview with a famous baseball player or maybe re-enact a play from some famous game. And it’s not until undergraduate level in college that you play a game of baseball. If we taught baseball that way, we would expect to see the same level of success in Little League that we currently see in our science classrooms – it’s not high.’’

In her book, Gopnik answers her question by saying: “learning to play baseball doesn’t prepare you to be a baseball player—it makes you a baseball player.’’

The same is true in environmental education—if you want kids to learn, to be scientists, to be stewards, you must involve them in the process. Take them into the woods, show them the rivers, let them experience the outdoors. These are the moments that will transform them into scientists. These are the moments that will inspire them to care for the natural world—not one day, but now.

# # #

Outdoor, Hands-on STEM Learning

Outdoor, Hands-on STEM Learning

Mary Birchem, Restoration Coordinator with Capitol Land Trust, guides students through a discussion of streamflow next to Johns Creek on the Bayshore Preserve. Photo by Bruce Livingston.


Outdoor Learning in Shelton: A Surge of Hope

by Eleanor Steinhagen

 

Bayshore Preserve – Shelton, WA

wo 7th graders have just tossed their pears into Johns Creek and are jogging downstream to see which one will cross the finish line first. Maneuvering around a large maple tree and jagged rocks on the stream’s bank, a handful of their classmates jog with them, including two “timers” who hold stopwatches in front of their chests, ready to hit the stop button when their designated pear reaches the finish line. The pears bob up and down for a moment, then drift into the creek’s swiftly flowing current and float eastward toward Oakland Bay.

The rest of the students are already standing at the finish line, peering upstream and cheering on their desired winner as they hunch forward and hide their hands in their sleeves to protect them from the frigid October morning air. It’s a sunny morning, but the temperature hovers in the high 30s and is slow to rise in the shade by the creek. As the winning pear crosses the finish line 25 seconds after the start of the race, several kids break into a loud cheer, while others throw their hands in the air, or turn away and yell, “Aw, man!” in disappointment.

The race was one of three that this group of 13 students conducted as a means of collecting the data they needed to measure streamflow in the creek at Bayshore Preserve, a 74-acre former golf course three miles northwest of Shelton, Washington, conserved by Capitol Land Trust in 2014. Before the race, the students learned about side channels and discussed how they impact flow; measured the distance from the race’s starting line to the finish line, or the “reach”; discussed key concepts they are learning in class, such as “ecosystem” and “biodiversity”; and, standing mere feet from the creek’s sand, cobble and stoneflies, they learned about the variety of sediments and creatures in northwest streams and where each can be found according to streamflow. Throughout the lesson, they used field journals to take notes and record data, including the depth and width of the section of the creek they were studying—information they would use to perform calculations in math class later that week.

The students’ work at Johns Creek is the culmination of three years of effort made by several groups to design and implement high impact field experiences for every student in the Shelton School District. The program started with a conversation at a community stakeholder meeting in 2014 between Margaret Tudor, then-Executive Director of Pacific Education Institute (PEI), Wendy Boles, Shelton School District Science Curriculum Leader and Science Teacher at Olympic Middle School, and Amanda Reed, Executive Director of Capitol Land Trust. Since the fall of 2015, Capitol Land Trust has been facilitating these field investigations for every 7th grader in the Shelton School District—serving around 300 students per year—using PEI’s trademark FieldSTEM model as a foundation for the work. In addition to Capitol Land Trust, Shelton School District and PEI, a handful of dedicated volunteers and other community stakeholders, such as the Squaxin Island Tribe, Mason County Conservation District, Green Diamond Resources and Taylor Shellfish, have stepped forward to support the program.

A student draws an example of a freshwater macroinvertebrate for his classmates to add to their field journals. Opportunities for students to share their work and learn from one another are built into the field investigation curriculum. Photo by Bruce Livingston.

This type of outdoor hands-on STEM learning appeals to many learner types and helps students overcome barriers to learning often found inside the classroom. During this first field investigation day, a group of students was asked why they liked learning science outside. Rian, a student at Olympic Middle School who used to go clamming near Bayshore with his mom and grandparents, said, ”I know some kids, they’re better with a complete visual. Not like a visual coming from a book, or written on a whiteboard.” Another student, Madison, said, “It’s good to be outside because you get physical education and you get to look at a lot of stuff,” she said. “I like coming out here to do hands-on learning and have fun with my friends.”

Capitol Land Trust in particular has done a lot of work to realize the initial vision of using Bayshore as a place to provide Shelton School District students with these learning opportunities. Daron Williams, Community Conservation Manager, and Mary Birchem, AmeriCorps Restoration Coordinator, are the land trust’s “boots on the ground,” making the improvements needed each year to transform the program from an average field trip to a PEI-style high impact field experience. Of his drive to help make these experiences happen for students, Daron said:

Doing FieldSTEM—where [students] can get the knowledge they need in a way that actually works for them—can help connect them with the land they live on. Shelton is an economically impoverished area. And a lot of families are struggling… As a small organization, we bring a capacity that the schools don’t have on their own. And that can make a difference in the students’ lives. Doing these project-based lessons, we could actually be helping students get through school that maybe wouldn’t have, and get them excited about science. This is a way to show them how science is connected to the real world.

To this end, Daron and Mary have worked tirelessly to increase student engagement and develop the program curriculum. When the program started in 2015, Daron collaborated with teachers to correlate what Bayshore offers and what is taught in the field to what students are learning in the classroom, ensuring that the lessons are aligned with state and national learning standards. In the summer of 2017, a year into her AmeriCorps service with Capitol Land Trust, Mary began recruiting additional volunteer teachers, and then designed and implemented a program to train them. Together, they have worked to adjust the schedule and coordinate the logistics of the field experience with district teachers. And on field experience days, both Mary and Daron work alongside the volunteer teachers to help them guide students through the FieldSTEM tasks.

This year especially, their effort shows. Viola Moran, student teacher at Olympic Middle School, shared her observation of Fiona (her name has been changed to protect her privacy) during the field investigation at Bayshore. A high-needs student in one of the district middle schools, Fiona doesn’t like to be the center of attention. As a rule, she doesn’t participate in activities or raise her hand in class. The commotion that comes with being in large groups of people makes her feel so uncomfortable that she waits in the bathroom until the hallways clear out during breaks before going to class. And when she gets there, she doesn’t want to sit with the other students.

When the Bayshore field investigation day was announced, Fiona said, “I’m not going. I’ll be sick that day.” But in spite of her reluctance, she got her permission slip in and ended up attending. And in the course of the afternoon, she became so engaged in the fieldwork that she and her classmates were doing that she volunteered to throw one of the pears during the fruit race. She also offered to draw an example of a macroinvertebrate on the board for the class—a profound shift from what Viola had observed in the classroom.

Throughout the first field investigation day, as well as the week following, Wendy, Viola, Mary, Daron and several of the volunteer teachers remarked that student engagement is at an all-time high this year. With the inevitable exceptions of “kids being kids,” the students listened attentively, asked questions, volunteered for a variety of tasks and diligently took notes and recorded their data. Viola and Wendy also observed that the students handled the creatures more gently this year than in the past. At the “Tidal Life” station, for example, on the first day of the field investigation, a group of students were so concerned about a hermit crab that had shed its shell in the molting process that they spent 10 minutes trying to persuade the crab to crawl into a shell they had found on the shore while offering various words of encouragement: “You want your shell!” and “Come on, man, you need a home!”

Students examine macroinvertebrates at the saltwater station. For many of them, this is the first time they’ve come into contact with the creatures that live in their surrounding area. Photo by Bruce Livingston.

Viola expounded on the above by adding:

Even though this is their community, there’s a good portion of [the students] that have never actually been around the creatures out there. And so, seeing the hermit crabs and the different specimens that they got to handle—they were just fascinated by that… And as they grow up, it’s right there. It’s a part of their environment.

What’s more, the impact of the field experience was evident in the classroom after the students went to Bayshore. “When we are going over ‘producer, consumer and decomposer,’” Viola said, “they are relating back to the information they got at Bayshore.”

Susie Vanderburg, retired elementary school teacher, former Thurston County Stream Team Coordinator and former Education Director for Olympia’s LOTT WET Science Center, agrees with Viola. “A lot of kids today are not getting exposed to the outdoors, not having experiences outside. They’re not given opportunities to love the land and be fascinated.” While her work as a volunteer is a big commitment, Susie does it because she believes that giving kids the opportunity to learn science outside, in the field, simultaneously gives them the opportunity to become stewards of the land they live on. “In environmental education we always say, once you get to know something, like a wetland or a prairie, then you begin to care about it. It’s personal. And if you care about it, then you’re willing to do something to protect it. If you never get outside and get to know the outdoors, you’re never going to care about it, you’re not going to protect it.”

While young people’s lack of exposure to the natural world poses a challenge, Wendy Boles, who is in her 15th year as a science teacher and is another major force behind implementing these powerful experiences for students, has begun to feel a surge of hope with a discovery she’s made in her classroom in recent years. It used to be that students entered her 7th grade class without any knowledge about (and very little interest in) the problems caused by issues such as overpopulation, resource depletion and pollution. In the past few years, however, Wendy has noticed in her students an increased awareness of and concern about climate change and environmental issues. She sees field investigations as an opportunity to help kids make the connection between these issues and how they impact their community. She hopes that by having real-world science learning experiences, her students will discover what they love to do, learn about science-related careers in their communities and be empowered to pursue them if that’s their dream.

Along with the work she does to help integrate the field investigation tasks with the district’s science curriculum, Wendy helps train volunteers and coordinate schedules with Capitol Land Trust, district teachers and the English language support staff that the district provides. “It is a lot of work. I mean a lot of work,” she said of the field investigation days. But all of that becomes worth it when she witnesses the new awareness among her students and their desire to safeguard the environment. “The kids are starting to go, Wow, we have to start caring about the environment. That to me is the biggest thing because if we aren’t taking measures to be good stewards, we are going to be in trouble. That’s my concern. Making sure that our planet can continue to support us in a way that we’re used to.”

At Bayshore, several individuals and community partners have come together to seize this opportunity by providing Wendy’s students, and every 6th and 7th grade student in the Shelton School District, with real-world, project-based, career-connected science education. The hope is that this education will enable them to lead richer and more meaningful lives, and that they, in turn, will draw from their time exploring and learning science out in their community to generate change where they can. Yes, it is a lot of work. Everyone involved agrees with Wendy on that. But they do it because they believe that the return will be well worth the effort.

Eleanor Steinhagen is the Communications Coordinator for Pacific Education Institute in Olympia, Washington.