E.E.’s Philosopher King (Pt 2)

E.E.’s Philosopher King (Pt 2)

Photo courtesy of Mike Brown.

Not One More Cute Project for the Kids:

Neal Maine’s Educational Vision

 

by Gregory A. Smith
Lewis & Clark College, Professor Emeritus

 

PART TWO
(see Part One here)

Sustaining Neal’s Place-Based Vision of Education: Lessons Learned

Despite the power and attractiveness of these educational practices, few of them remain in evidence after the close to 20 years since Neal retired and started devoting his time to land conservation and nature photography, one of the reasons he sought me out to document central elements of his work in Seaside and the north coast. He is thus well aware of the difficulty of institutionalizing teaching approaches that run contrary to the direction embraced by most contemporary schools. Part of the reason behind this outcome might be related to the way this dilemma is framed in dualistic terms. Rather than seeing the implementation of Neal’s vision as an either-or proposition, a more productive strategy might be to adopt a both-and perspective and then find ways that more of the kinds of things that Neal encouraged could become part of the mainstream educational agenda, not replacing what is now familiar and widely accepted but balancing this with an approach capable of generating higher levels of student engagement, ownership, and meaning. To that end, here are six lessons I take from what I’ve learned from Neal over the years:

  1. Give as much priority to student questions as to required standards.
  2. Value excited learners as much as competent test takers.
  3. Make as much time for community and outside-of-classroom explorations as the mastery of textbook knowledge.
  4. Create organizational structures that encourage creativity as much as accountability.
  5. Encourage teachers to partner with students as co-learners as much as they serve as their instructors.
  6. Develop teachers as alert to unexpected learning opportunities as they are to curricular requirements.

Give as much priority to student questions as to required standards. Human beings are intellectually primed to investigate questions whose answers are not immediately apparent. Think of the appeal of mystery novels, movies, or television programs, our attraction to riddles, the appeal of crossword puzzles. Although these formats involve no ownership on the part of readers, listeners, or players, they still are capable of eliciting attention and time commitment. Even more powerful are the questions we come up with ourselves. Part of the power of the educational approach Neal encouraged teachers to develop lay in the way he tapped into this human desire. Here’s one more story from the tour as an example of the possible. The students who had been involved in the Pompey Wetlands project at one point got ahold of a tape recorder and oscilloscope and began recording one another’s laughter. They had been studying the sounds and images (on the oscilloscope) of whale songs. They wondered whether their individual laughter would have some of the same recognizable visual features on the oscilloscope as what they had observed with whales. They found that they did and after a time could associate different visual patterns with the laughter of specific students in the classroom. Imagine their fascination at having made this discovery. Such fascination is the stuff of serious learning.

Value excited learners as much as competent test takers. Making time for student questions Is one way to excite learning. Another is to provide the opportunity to do things as well as hear about them or meet people as well as read about them. Part of that doing can be as simple as taking a walk in the woods or planting a garden. Part of it could involve designing an experiment to see whether moss really does only grow on the north side of trees. Part of it could involve participating in a group that sees what’s on the river bottom across a transect of the Columbia River. The possibilities of the doing and the investigating are nearly limitless. Such learning opportunities take advantage of human curiosity and the pleasure our species takes in gaining new skills and competencies. I can imagine some of the stories that children who had learned to keep a boat on straight course across the Columbia must have told their parents when they got home that evening—or what students who participated as photographers in the Day in the Life project shared. Not all learning experiences in school will be as memorable or as exciting as these, but some of them should be and not only on an infrequent basis. Things should be happening in school that fire students’ imaginations and intellects, things that instill in them a desire to learn more. Mastery of information for tests of one sort or another is one the requirements of life in modern societies, and it is a mastery we desire from the experts we turn to when in need of medical, legal, or mechanical services. The demand for such testing is not going to go away. But what ignites deep learning is an emotional connection with different topics, the personalization of learning that Neal sought to spread throughout the Seaside School District, something much more likely to happen by getting kids into the thick of things and engaging them in projects that demand their involvement.

Make as much time for community and outside-of-classroom explorations as the mastery of textbook knowledge. The knowledge found within textbooks is not without value; it is, after all, one of the central tasks of education to transmit culture to the young. At issue is whether this culture is being linked to the lives of children and youth in ways that communicate its significance and meaning. In the past, the authority (and fear) invested in teachers, ministers, and older relatives was enough to ensure the attention of many children to these issues. This is no longer the case in part thanks to the media, to mass culture, and to the weakening of traditional institutions like the family, school, and church. Place-based educators argue that one way to address this issue involves situating learning within the context of students’ own lived experience and the experience of people in their community. When this learning also engages them in the investigation of important local issues and provides them with the opportunity to share their findings with other peers and adults, so much the better. One of the strongest motivators for human participation is the chance to engage in activities that are purposeful and valued by others. Experiences like the health fair described earlier can both encourage involvement and strengthen students’ mastery of the knowledge and skills their teachers are attempting to convey to them. More students, furthermore, seem likely to produce higher quality work when they grasp its social significance and know it will be viewed and examined by community members as well as their teacher.

Create organizational structures that encourage creativity as much as accountability. One of the consequences of the standards and accountability movement since the 1980s has been the tendency on the part of many educators to teach to the test and for their administrators to assess their competence on the basis of students’ scores. School administrators have also become more likely to require teachers to justify the activities they bring into the classroom on the basis of specific curricular aims or benchmarks. Given the degree to which schools, for decades, have failed to adequately prepare non-White and lower income students, accountability structures are clearly needed, but the way they are currently being used has resulted in a narrowing of the curriculum and a reduction in teachers’ ability to respond to learning opportunities presented by either students or community members. Place- and community-based education requires the capacity to improvise and make use of instructional possibilities that present themselves during the school year; these possibilities can’t always be anticipated. Embracing them demands the willingness of teachers to follow interesting leads while at the same time looking for ways that curricular requirements can be addressed by doing so. When schools impose both constraints and reward structures that inhibit this kind of flexibility, fewer teachers become willing to experiment in the way teachers who worked with Neal were able to. School districts can go a long way to encouraging creativity by inviting innovative teachers like Neal to share their expertise with others, either as teachers on special assignment or as members of within-district teams responsible for professional development. Addressing policies that affect daily schedules, the school calendar, and transportation requests can also do much to make learning in the community both possible and accessible.

            Encourage teachers to partner with students as co-learners as much as they serve as their instructors. It is not surprising that teachers feel uncomfortable about venturing into unfamiliar intellectual terrain with their students, something that gaining knowledge about what may be a new or minimally examined place and community will necessarily require. The same thing is true of pursuing questions that aren’t going to be answered by the textbook but demand data gathering and analysis. Teaching in this way involves a certain relinquishment of control and the willingness to trust students to be engaged participants in a process of collective learning. This doesn’t mean that a teacher only becomes a “guide on the side” completely following students’ lead and offering assistance only when needed. The teacher instead becomes a “model learner,” the person in the room with more expertise in knowing how to frame questions, seek out information, assess its credibility, locate appropriate experts, create experiments, organize data and analyze findings, and prepare presentations. There will still be a need for mini-lessons about specific content tied into students’ investigations, but the primary task of a teacher with many place-based units will be—like a graduate school advisor—to demonstrate what it means to be an independent learner committed to uncovering the truth inherent in different situations—just as some of the students attempted to discover whether moss always grows on the north side of trees when they began asking questions of the watershed. Moving into a role like this will be disconcerting for many teachers, but the rewards can be worth their initial discomfort as they find themselves no longer teaching the same thing every year but joining their students in a process of intellectual discovery and knowledge creation.

            Develop teachers as alert to unexpected learning opportunities as they are to curricular requirements. Enacting the previous five suggestions involves cultivating teachers who feel competent enough about their capacity as educators–drawing upon an analogy from the kitchen–to invent new and healthful dishes from ingredients at hand as they do following recipes. Recipes are certainly useful, but the test of an experienced cook is found in what they can create from scratch. Toward the end of our day together, Neal told a story about a storm-felled Sitka spruce in a park just across the street from a local middle school. Neal and a teacher there recognized the learning potentiality of this fallen giant and were able to forestall city employees for a couple of weeks as students conducted a tree necropsy. Especially valuable was the possibility of seeing at ground level the biological activity that goes on at the crown of a mature tree. In many instances, this learning resource would have been seen as no more than a mess to be cleaned up rather than an opportunity for an in-depth and unique scientific investigation. Novice and even experienced teachers need to be exposed to stories like this one that invite them to consider possibilities they may have never or rarely encountered during the course of their own education. Neal recognized that teaching in this way might be more of an art form than something that cab be easily taught but still offered the following guidance: “Don’t sleep on the way to school. Have your brain engaged. Always be looking for opportunities to make it come to life, especially if it’s community based. That really makes it work!”

 

Paying It Forward

My day-long journey through a partial history of Neal Maine’s work in Seaside deepened my understanding of his vision of the possible and at the same time his frustration with how difficult it has been to get many of his good ideas to stick. Early in our conversation he spoke of the way our society’s conventional vision of schooling constrains the education he believes needs to happen if young people are to grow into responsible citizens able to bring fresh and potentially more appropriate ideas to the challenges of living in the 21st century. Rather than asking students to be the passive recipients of information passed on to them by others in an effort to prepare them for adulthood and citizenship, educators need to give children the chance to participate now as data gatherers, knowledge producers, and community participants. As Neal put it, “You ought to exploit someone who is uncontaminated with having the same old answer. . . . How much could you exploit them, so to speak, in a positive, productive, humane, and sincere way? The irony of it is that the effort to exploit that capacity becomes the most powerful preparation possible for a later point in your life cycle which is what we should call adulthood.” This, not the creation of “one more cute project for the kids,” was Neal’s aim when he attempted to stimulate educational innovation in districts along the Northern Oregon and Southern Washington coast and influenced the thinking of rural educators across the United States as a board member of the Annenberg Rural Challenge.

He found that institutionalizing changes like the ones he enacted is not easy. A similar lesson was learned through the Rural Challenge, as well. As a board member of the Rural School and Community Trust I had a chance to be in touch with a number of the schools or districts that had received grants from the earlier Rural Challenge. Without the added resources and the network of support provided by that well-funded effort, it was difficult for teachers and administrators to sustain the work they had accomplished during that five-year period.

Regardless of these difficulties, ideas set in motion during that time are continuing to evolve. One of Neal’s Oregon colleagues, Jon Yoder, played a significant role in shaping the Great Lakes Stewardship Initiative in Michigan that has sought to make environmental stewards out of the state’s children and youth for over a decade. Much of the work done there bears the stamp of Neal’s efforts, affecting over 115,000 students since the program began in 2007 (https://greatlakesstewardship.org/). Across the United States, a survey of place- and community-based educators completed in 2016 surfaced over 150 schools that are retooling their curriculum and instruction in ways that advance the aims Neal pursued in the Pacific Northwest (https://awesome-table.com/-KlsuLBGU0pYWpjFH1uh/view). Many other schools were also surfaced through a project sponsored by the Getting Smart website that has created a blog where teachers have been able to post their own stories about place-based education (http://www.gettingsmart.com/categories/series/place-based-education/). Finally, well-established institutions like Eastern Michigan University (https://www.emich.edu/coe/news/2016/2016-05-10-a-new-wave-of-urban-education.php) and the Teton Science Schools in Wyoming (https://education-reimagined.org/pioneers/teton-science-schools/) are creating teacher education and professional development programs aimed at preparing teachers able to embrace and then deliver learning experiences likely to lead to the forms of participation, citizenship, and community change Neal hoped to engender.

Whether schools on their own will be able to support and sustain innovations like these remains an open question, but the persistence of these ideas and the possibilities they are stimulating seem hopeful. Believing as I do that cultures change more through the telling of stories than bureaucratic manipulation, I encourage readers to have conversations about the work of Neal Maine and his educational vision. Going even further, for those of you who are teachers, try some of these possibilities out in your own schools and communities and see what happens. Then share your experiences with others—both the things that work and those that don’t. Learn from one another. As a tribute to Neal and the future, let’s see how long we can keep these ideas alive and how far we might be able to spread them.

Greg Smith is an emeritus professor who taught for 23 years in the Graduate School of Education and Counseling at Lewis & Clark College.  He’s keeping busy in his retirement serving on the board of the Great Lakes Stewardship Initiative in Michigan and the educational advisory committee of the Teton Science Schools in Wyoming; at home, he’s co-chairing a local committee that is seeking to develop curriculum regarding the Portland-Multnomah County Climate Action Plan.  He is the author or editor of six books including Place- and Community-Based Education in Schools with David Sobel.

Classroom without walls

Classroom without walls

Stepping Into Nature 2013June04

“Mr. D., that was the best science class I’ve ever had!”

The trials and successes of a classroom without walls

By Greg Derbyshire

T3he above feedback, made by a grade 8 student, is one of many similar comments made to me by students and parents who recognize and appreciate the opportunities provided by outdoor experiential education. That’s why I took students outdoors when I was a classroom teacher. Not for the accolades or ego stroking, but for the knowledge that I reached many students in a way that can’t be done inside the walls of a classroom. Few of us need to be informed of screen-time statistics when it comes to our modern society. A growing body of research is supporting what many of us know inherently, and the long-term impacts of the loss of exposure to the natural world are mounting. We now know that connecting with the natural world benefits many aspects of our being. Physical, social, spiritual, and mental health improve when we spend more time outdoors. Bullying decreases, ADHD symptoms are reduced, and social and cultural barriers diminish. For many of us, we know that we have an obligation as teachers to expose our students to the outdoors; it may be the only opportunity many of them get.

Herding Cats

The last class of my indoor teaching career was one of the nicest groups of grade 7 and 8s I’d had the pleasure of working with. They were energetic, creative, and enthusiastic. They weren’t, however, good listeners. During the first couple of weeks of September, I tried to help them develop better listening skills.

The usual strategies didn’t work; being late for gym class bothered them, but didn’t change their attentiveness.

With some trepidation then, I prepared them for a study of our schoolyard and the adjacent vacant land. The grade 7’s would investigate biodiversity for the Interactions in the Environment science unit and the grade 8’s would review the above, plus collect plant and water specimens for investigation with microscopes for the Cells unit.

Prior to going outdoors, we reviewed the expectations. Each small group would carry a clipboard, worksheets, scrap paper, pencils, measuring tapes or metre sticks and numerous zip-lock bags for collecting samples. Members of each group were to stay together and work together, solving problems on their own if possible.

I knew this class might be a bit challenging in an outdoor setting because of the struggles we’d had with listening skills in the classroom. But it was much worse than expected. Groups split up, metre sticks were used as swords, pencils got lost, and worksheets didn’t get filled out properly. And, that was just in the schoolyard! With thirty years as a classroom teacher under my belt, and with considerable experience at outdoor education centres, leadership centres and summer camps over the previous thirty-five years, I had no idea a group could be so frustrating. Despite the schoolyard behaviour, we moved to the adjacent vacant land and continued our study. When we finished our work and lined up at the school door to go back inside, I shared with them my dismay at their blatant disrespect for their peers, for me, and for the learning opportunity, which they had just spoiled. I told them that I had never had such a challenging group in all my years teaching outdoors, and that my experience that day was much like trying to herd cats. They knew Iwas upset, so they followed my instructions to return to class, sit down,open their reading books and remain silent.

I sat down at my desk to plan my lecture on respect and listening skills. After fifteen minutes, I asked for their attention.

Instead of my lecture though, I instinctively asked them to share what was good and what wasn’t so good about their outdoor learning experience. A few students offered the correct observations about poor listening skills and a general lack of following instructions. A couple of students suggested that the hands-on learning was a lot of fun. Then, the comment I’ll never forget: “Mr. D. – that was the best science class I’ve ever had!”

I paused. It was obvious that many other students felt the same. “Why then,” I asked, “were you so out of control out there?” It took some time, but some students shared that they seldom, if ever, went outdoors for anything but recess and gym class. They just couldn’t control themselves with the perceived freedom; it was too much like recess, despite having clipboards and worksheets in hand.

Even with this frustrating outing, the learning that followed was substantial. We spent many quality hours preparing plants for pressing, identifying species, mapping study plots with species variety, comparing schoolyard plots with vacant land plots, preparing slides for looking at samples through microscopes, identifying microscopic invertebrates, and preparing reports for presentation. Just one afternoon of outdoor learning provided plenty of extended learning opportunities in the classroom, and set up anticipation for future forays into outdoor experiential education.

In fact, the outdoors became our classroom without walls. Students began to ask if we could go outside to learn. We did. Over the course of the year, we left the classroom for language, math, history, geography, science, physical and health education, and the arts. The outdoors became a natural place to learn. And they became better learners as a result.

 

Benefits, Barriers, Basics and Beyond

As suggested above, there are dozens of benefits to outdoor experiential education. Students get more exercise, they socialize more, co-operate more and learn more.

They are exposed to new venues for learning where staff can share their expertise. Some students, who might find desk learning a bit of a struggle, shine in the outdoors; they often take leadership roles in groups – something they would not normally do inside. In my experience, students become motivated to work well together so that they don’t lose their outdoor learning opportunities.

The different venues open up different ways of learning. Most will know of Howard Gardner’s theory of multiple intelligences, (Frames of Mind: The Theory of Multiple Intelligences,1993).

There are now nine recognized intelligences: logical-mathematical, spatial, linguistic, bodily-kinaesthetic, musical, interpersonal, intrapersonal, naturalistic and existential. I am convinced that outdoor experiential education can support and enhance all nine intelligences.

Recently in education, differentiated instructionhas been touted as the way to reach more of our students. Take them outside, then! Some will thrive. Some will be challenged. All should benefit in their own ways.

There are, however, a few barriers to taking classes out regularly. A single permission form for a year of local outdoor excursions may not be allowed at some schools. On the other hand, many schools and boards are moving toward being “paperless,” so trip-specific permission forms could easily be completed electronically. Depending on administration, specific school and classroom compositions, the availability of volunteers may be a barrier. None are typically needed if you are staying on school property, and possibly if you are going “next door.” Other outdoor resources within walking distances would require volunteers. Individual schools and boards will have their specific requirements.

As is suggested by my “herding cats”experience, individual class dynamics will impact on the quantity and quality of outdoor experiences. Teachers must recognize the uniqueness of each class and the individuals within it, and plan accordingly. The reality is, some classes may not be able to get out as often as others. Regardless, the benefits of outdoor excursions will be palpable.Whether you’re a novice outdoor educator who needs support, or the experienced teacher who can provide that support, there are a few basics to keep in mind. The list below is a starting point. Adjust it as you see fit for each activity to suit your specific needs. The more experience you get at this, the easier it is.

  • Get to know your local resources, (schoolyard, woodlots, vacant land, urban studies opportunities, talented parents or other adults in the community who might be able to help you with specific aspects of outdoor learning).
  • Get to know your board and school policies and procedures for outdoor excursions; complete any required paperwork. Perhaps a generic permission form for occasional excursions close to school would suffice for those outdoor teaching opportunities that present themselves throughout the year.
  • Arrange for volunteers, if needed.
  • Know your students; what are their strengths and limitations?
  • Plan the activity for your chosen curriculum area and topic, and gather materials and supplies.
  • Carry out that plan; take those kids outside!
  • Debrief the students to find out what they liked and didn’t like, and what they understood and didn’t understand. This feedback will prove very useful for future outings.
  • Do follow-up activities to solidify learning.

 

Beyond the basics, here are some ideas for developing a network of outdoor educators within your school and district.

  • Consult with colleagues to learn the basics.
  • Share your ideas and experiences at regular meetings.
  • Create outdoor activity resource documents specific to your schoolyard and local resources, (saved on your school’s server, of course). All teachers can contribute to it.
  • Combine classes for some of your excursions. This is one way to team up experienced and inexperienced teachers, and more appropriate student groupings may be easier to arrange.
  • Be an advocate for outdoor experiential education whenever you can.

So, why bother?

From my years of experience in the outdoor education and recreation sectors, I’ve seen what a difference going outdoors can make. Beyond all the wonderful benefits stated in research, there’s something that happens to children when they spend time outdoors. Their eyes soften. They begin to see the world in a different way. They’re more centred and at peace. They discover a part of themselves they didn’t previously know. What more could you want for your students?The bottom line is, if you don’t make the small effort to take your kids outside, who will?


Greg Derbyshire is a recently retired classroom teacher with the Grand Erie District School Board in Ontario, Canada. His many and varied outdoor interests and pursuits continue to occupy much of his time. More recently, his interest in promoting the benefits of outdoor experiential education has inspired the creation of a new venture, It All Comes Naturally.

This article first appeared in Stepping Into Nature, a publication of The Back to Nature Network, a multisectoral coalition oforganizations and agencies working to connect children and families with nature. The Network was established with the support of the Ontario Trillium Foundation through a collaborative partnership between Royal Botanical Gardens, Parks and Recreation Ontario and Ontario Nature.

Jim Martin: Arts and Humanities in the Sciences?

Jim Martin: Arts and Humanities in the Sciences?

schoolshipblogspotcom

schoolship.blogspot.com

Arts and Humanities in the Sciences? Is that incongruous, or what?

By Jim Martin

Have you ever ‘felt’ the weather as cloud formations began to change? I love to watch Mares’ Tails form; multiple long extensions of a cumulus cloud that race out ahead, then turn up and curl back. They signal a change in the weather; an eye-catching choreography in the sky; a dance students could perform to learn about weather. I started teaching biology to college students in 1970, and had no thoughts about using the arts and humanities in my delivery. I was open to them; my childhood and youth were infused with them. But I saw no way to employ them because it seemed to me that they were an adjunct, a vehicle I would have to tack onto an already overloaded syllabus.

Then, a few years later, concerned about the quality of my general biology (Bio 101) students’ understandings, and wondering what they were learning during their K-12 years, I accepted an opportunity to teach a 7th grade self-contained classroom. Before the first day of school, I decided not to use the school’s language arts texts and workbooks. They were utterly boring; pages to go through so you could answer a few tedious questions. So, I organized my own curriculum. In one part, the delivery vehicle was drama. We stretched sheets across the length of the classroom, and began to write and perform scripts.

I used these scripts, and their repetitious deliveries to teach topics like DNA and protein synthesis, natural selection, and more. While doing that, I discovered that certain pieces of the science were learned well with this method, so this integrated way of teaching started to become a vehicle I used to teach multi-disciplinary units in language, performance arts, and science.

This is beginning to sound ominous! Don’t despair. I did these things because I was comfortable with them. For one thing, I was teaching both language arts and science to this class. Since we were in the same classroom all day, it was an easy thing to do. I can tell you this: If you can find the courage to try to use one piece of the arts and humanities in one science activity, you might discover the strength of this method in helping students understand the concepts they are studying. And, developing critical thinking and executive functions you might not have noticed they carry with them.

Be patient. Let me finish this reminiscence, and we’ll get to the pragmatic details of how you might try one small activity; and assess it. Not long after, I found myself learning what I could of the human brain; how it learns, how it expresses these learnings. This set me on a journey I still travel. An interesting viewpoint on that journey was one where I could see the parts of the brain, and their connections (critical piece there) that were used to conceive a visualization of a piece of art, then execute its expression in the finished piece itself. Contrary to what I’d always assumed, that art and science used different parts of the brain for their work, both used nearly the same parts and their connections. No wonder my tentative attempts to teach art and science together seemed to work! While we isolate and jurisdict the disciplines, the brain does not.

It’s challenging to meet science standards and benchmarks by using the arts and humanities as vehicles for teaching to these standards. The main reason teachers who do this continue the practice is that students’ learnings stay with them. After they take the test, they don’t forget what they have learned. The Seeking System, as described by Jaak Panksepp, is a coordinated effort between the limbic system and the cortex which can lead to conceptual learnings, encourages conceptual learning by engaging learners in an active learning inquiry which builds on students’ curiosity. It’s this state of expectant curiosity which keeps students on-task, seeking an answer, finding out. Like observing paramecia flitting about among algae on a microscope slide. What are they? What are they doing? Where are they going? Curiosity a fair wind which drives their sails, students will devour the books and internet for information they seek.

While this state is initiated in the limbic, a part of the brain which does little thinking, it engages, via prompts from the limbic to the prefrontal cortex (pfc), which processes students’ thoughts, engages critical thinking, brings to working memory in the pfc other relevant information, and performs the executive functions which keep learners on task, following their plan. Learnings there then move back to the cortical regions brought on line, where they become connected; long-term memories, which can be called out via any of the neural circuits brought to the pfc to deal with this new experience.

Let’s look at an activity which incorporates the arts and humanities to drive a science unit in weather. Teachers have used dance to help their students learn the meteorological processes that cause phenomena like Mares’ Tails. You can do the observation any time in the year, then recall it when your class does meteorology. Or, start the dance when you make the observation, and finish in the appropriate unit. When students observe Mares’ Tails, then build a dance around what they have observed, they follow an interesting trail into meteorology to discover the processes involved in producing Mares’ Tails. And, even better, their connection to subsequent weather. Then, students and the teacher can use this newly learned information to better inform the choreography they are constructing.

As they observe and find out about Mares’ Tails, the fact that they are also observing for the clouds’ dynamics will engage the Seeking System in many students; the quest to find out. Engaging the idea of dance and Mares’ Tails will pique the curiosity of others. And, a very nice coincidence, both alert the prefrontal cortex and initiate the critical thinking and executive direction capacities of the brain as they build an abundance of routes to relevant memory, which your students use to move effortlessly through the landmarks delimited in Bloom’s Taxonomy.

While relatively simple, the teaching and learning in an activity like this is challenging for teachers. It is definitely not part of most of our pre-service and in-service professional educations. We all want to teach well, and to understand what and how we are teaching. If, like most Americans, the arts and humanities aren’t an integral part of our teachers’ developmental experience, incorporating them into our teaching is uncomfortable at best. In spite of this, in time, this sort of integrated teaching will have wider acceptance, but just now it seems like an adjunct to most education. I say this: The education establishment in America is woefully unfamiliar with the brain and its processes in learning, and its relationship with the rest of the body currently being described in the area of embodied cognition; the close coupling of processes in the brain and processes in the rest of the body. We need to have the courage to begin to explore this lucrative, brain-based teaching modality. The brain is the organ of learning.

By actively participating in the process of using dance to begin to learn about Mares’ Tails, both teacher and students incorporate the learning in long-term conceptual schemata they will carry with them. This is because the conceptual information they have learned is available via multiple neural pathways; much better than being accessed only by reading a question stem. Both the dance and the science inquiry follow similar trails through the brain. This is in contrast to the effect of relying on what Panksepp terms the limbic’s Fear System; the anxiety of some degree which is associated with learning science facts in order to pass a test. In this case, the information is stored by itself, un-connected to other relevant conceptual information stored elsewhere, and with no connection to the real-world memories produced during active learning. If students are to carry what they learn into their lives, they need to learn it in authentic ways. Seeking’s learnings are remembered; Fear’s are forgotten after the test. This means that the teacher has to be committed to this learning modality. And, committed to taking on only that which she is comfortable with. Should you want to try, but are unsure, you can contact a dance teacher to help, or a colleague who has taken dance. Lots of them around. You could even check a dance studio. Most people who work in the arts and humanities are open to help.

Here is a breakdown of planning steps a hypothetical teacher might take in preparing to deliver the Mares’ Tails meteorology/dance section of a unit on weather. As you read each step, ask yourself if you could do it now. You might surprise yourself.

1) Observe Mares’ Tails; either a serendipitous observation, or consult a meteorologist to find out when to expect them. Difficult until you’ve positively identified one; fun and easy after that. Students can do this as homework, or as a whole class if Mares’ Tails occur during a class. (You may have noticed that weather doesn’t program itself to coordinate with school schedules. Or their needs.)

2) During the observation, have students note any dynamics in the clouds. This is a good time to suggest the idea of clouds dancing.

3) If their interest is piqued, raise the idea of a Mares’ Tail dance; otherwise wait.

4) First approximation of the dance. Note questions which arise within groups.

5) Ask the class what more can they find out about Mares’ Tails. Give them time to find out.

6) Incorporate this information into the choreography. Name the dance’s sections from meterological learnings. (Note: I was feeling creative, in Seeking mode, by this time, and that’s when my pen wrote, “. . . (n)ame the dance’s sections from meteorological learnings.” Words and a visualization just popped up. Evidence my prefrontal cortex was coming on line. One of the things Seeking does.)

7) Perform the dance for an audience, and explain the meteorology; perhaps by dance section.

8) Two assessments or tests: Yours, based on their work; and a standard test from your publisher or the web. Compare results.

9) Assess the project: you, your students, their audience.

10) Write an article for Clearing and send it in!

jimphoto3This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests, and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”

On Teaching Science

On Teaching Science

identifying-samplesWhat’s the Difference…

…between a single performer and an energetic band? Can students teach themselves?

by Jim Martin
CLEARING Master Teacher

I-bluen an earlier set of blogs, we followed a middle school class whose science teacher had started them on a project to study a creek that flows at the edge of the school ground. The last time we saw them, groups were analyzing and interpreting the data and observations they collected on their first major field trip to the creek, and preparing a report to the class. The blog focused in on the group doing macros, macroinvertebrate insect larvae, worms, etc., who live on the streambed; aquatic invertebrates large enough to distinguish with the unaided (except for glasses) eye.

They eventually organized themselves into three groups, one to cover the process of collecting the macros, one to describe how they identified and counted them, and a third to find out how to use their macro findings to estimate the health of the creek. Sounds like they’re on a learning curve, moving from Acquisition to Proficiency. They would need some feedback, both from withn the group and from their teacher. She gave each group one more task, to find out what they could about effective student work groups.

The macro group prepared the presentation they would make to the class. Each of their groups prepared their part, then they gave their presentations within the group, and used this experience to tweak them into a final, effective presentation. Their presentation included the interpretation they made based on their collected data that the creek’s current health was Fair, tending toward Good.

They used the rest of their prep time to begin a search for information on effective student work groups. During their web search, they were surprised there was so little there about middle school work groups, since they are finding their work invigorating, and feel they are learning a lot. Some of the sites they visited were confusing, some targeted high schools, but most described college work groups. Among those things related to effective work groups they found and were interested in were those which described the work, maintenance, and blocking roles individuals play within work groups, and those which described how groups can make their work visible while they’re processing by using whiteboards, posters, etc. They saw how these aids would help clarify concepts as they were learning. They decided to report on these two findings, roles group members play and making the work visible so that it is easier to discuss and process.

Of the two group characteristics they decided to report on, the idea that individuals play roles in a group, and these roles affect the work of the group were the most interesting to them, and a bit of a revelation. They were especially intrigued by one of the Blocking roles, which interfere with a group’s capacity to complete its work. The one they found most interesting was the Avoidance Behaver role. Each of them had engaged this role when they were madly fighting for the D-net while first collecting macros. (By joisting to control the D-net and collecting tray, they were avoiding the work in the way in which they behaved. They had employed Avoidance Behaviors; each of them, as they joisted, was an Avoidance Behaver.) They still laughed at the fun they had been having, but also felt the odd juxtaposition of this role with the Work and Maintenance roles they also played to move the work along, clarify the processes they used and identifications they made, keeping communication lines open, and sending out consensus queries about what they thought they were finding out.

They were encouraged that most of the roles they assumed were positive ones which lead to a successful project. As they talked, they also came to consensus that this was a finding of their work as important as their findings indicating that the health of the stream was Fair, tending toward Good. A revelation for them, and would become one for their teacher.

This group has made good progress on their new learning curves, macroinvertebrates and group roles. One curve is facilitating their conceptual understanding of macros; the other curve is empowering them to understand the dynamics of an effective work group. They entered these learning curves because (1) their teacher set them up in the first place, and (2) the Acquisition phase included finding out about macros. And, perhaps inadvertently, their, and their teacher’s discovery of the importance of developing effective work groups. Because the students were first finding macros, then learning about them, they started their work seeking information and patterns which would help them know who was living on the bottom of the creek. They didn’t consciously couch their investigation in these terms, but this is what they were experiencing.

The experience of seeing if they could actually capture macros, and the fun involved in collecting and seeing them stimulated the limbic’s Seeking system in their brains, which added dopamine to the neural soup that facilitates human efforts to make work interesting. These feelings and felt interests, in turn, drove them to the books and the web to follow up on the needs to know generated by their inquiries. Under their own power. First, the excitement of learning how best to capture macros, then residual interest carried them to the manuals to begin to identify who was there. ‘Finding Out’ is a powerful student (and human) motivator, one we stamp out as students move through the grades we teach. Perhaps because many of us don’t understand the content we teach well enough to allow our students to have their own thoughts about it. (Parenthetical comment on the 50%)

We could learn to use this motivator to engage conceptual learnings in ways that involve and invest our students in their learnings, and empower them as persons. There is a big difference between memorizing for a test and trying to find out the same information. The difference between a single performer and an energetic band. One way that difference expresses itself is in our standing in global scales of learning, where we are consistently near the bottom, rarely in the upper half. Our current model of school is memorizing for tests. How well does that work? We need to rediscover this active, group-centered, collaborative way of being human, and exploit it in our classrooms and outdoor sites. Telling students what is before them doesn’t stimulate long-term conceptual memory; helping them find out does. I’d like to say, “Freeing them to find out,” but for many teachers those words, especially the first one, might be intimidating to hear.

Building effective work groups takes time and patience. Fortunately, it goes quicker if the process takes place while the groups are pursuing an inquiry. Engaging in this kind of work develops needs for just the sort of group processes which make inquiries successful. While she may not have consciously planned it, dividing the class into groups, each with its own part of the creek to study, set the stage with students who were ready to learn about effective work groups. They weren’t consciously aware that they were ready, but their needs to do the work did the job for them.

(I’m interested in Jaak Panksepp’s work at Washington State University on the brain’s limbic system’s Seeking System. It’s important to learning for understanding because this is one of the few instances in which engaging the relatively primitive Limbic System leads to effective activity in the cortex, where critical thinking happens. When educators speak of the brain and learning in the same sentence, eyes in just about any audience tend to either roll or glaze over. Even though the brain is our organ of learning, teachers and administrators tend to think of learning and publishers’ products as the only bundle that matters. No room for neuronal bundles. Connecting. In effective ways. Evolved bottom up, and may work best that way.)

First, by sending students to find out, the emotions of the Seeking system move them to the cortex and critical thinking. Then we organize the learners’ environment so the information they (their cortices) need to know is readily available. And we can watch as our students learn for understanding. My experience was this: First engage students in their inquiries, then see how much of the reading I would have assigned or lectured on that they get into on their own. My observations on learners over the years told me that any movement away from total inertia on the part of the student indicates a determined effort to learn even if it’s a small move, say 10% of the way to mastery. Perusing the research on the brain eventually clarified that particular parts of the brain, when they were working, elicited the learning behaviors I observed, and clarified students’ involvement and investment in the learning, and empowerment as persons, and prepared them to form effective work groups.

So, the teacher and her class were learning that one thing which will enhance student performance is to learn how to get group members to interact. You can facilitate this by ensuring that students’ work calls for the communication skills it takes to develop consensual decisions about complex topics. The teacher whose students we just followed did this by asking each group to research information about effective student work groups. They do the work, she gleans the information. Win-win. A further step would be deciding how to include minority opinions in final reports. Simple to do; you just announce that you allow it. In my experience, this helps students achieve ownership of their learnings. A surprise for me was that sometimes students presenting a minority report saw something other groups presented from a new perspective, that of observer, not of learner. Whether that altered their interpretation of findings wasn’t as important as the fact that they were developing the capacity to hear another view and think about it. And validate the right to hold it. And, holders of the majority opinion often did review their thoughts.

The macro group is moving through its own learning curve. Does their progress look like a learning curve? Where did they start? Where are they now? How does the learning curve differ for an individual student vs. an effective work group? I picture this difference as one between a single, good performer, and an energetic band; the interactions between group members, while they’re working, can make a routine school activity become an exciting experience, a performance to be remembered. If you’re a teacher, listen to that last word.

jimphoto3This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests, and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”

Teaching Science Inquiry

Teaching Science Inquiry

Can I become a science inquiry facilitator? . . . If I’ve never been one?

by Jim Martin

What do I need to be competent in, comfortable with, being a facilitator instead of a top-down teacher? I think a first thing is the recognition that people can learn on their own; that they don’t need to hear me say every single thing that I want them to know. To be free to allow that, facilitators have to be comfortable with their understandings of the content they are delivering. And, they need to be comfortable developing effective work groups. Actually, I can think of a bazillion things, but these three are, so I currently believe, essential to making the transition.

If the Common Core State Standards (CCSS) and New Generation Science Standards (NGSS) are going to become more than simply another swing of the pendulum that arcs through the schools with predictive regularity, then teachers need to rally to support and develop those pieces of these initiatives which are directly targeted at the deficiencies in our teaching. Deficiencies which have landed us in a mediocre position in the educational statistics describing achievement on the globe. We’re the only ones who can do it.

Both the CCSS and NGSS initiatives profess to be based on a constructivist, active learning model of teaching and learning. This, to me, is wonderful news. Our brain is admirably organized to learn by actively constructing conceptual schemata, conceptual learnings. It does this best by asking questions of the real world. This means that teachers aren’t , of necessity, people who put learning into other people’s brains; rather, they are people who can organize their teaching environments to draw out the learning potential which resides in their students’ brains. They facilitate those brains to enter a conceptual space, engage and discuss what is there, and find out as much as they can about it. Like the little robotic vacuum cleaners, when, once their switch is turned on, clean up all the dust and litter in the room. All by themselves, with no one directing them. Once you turn on a brain, it doesn’t turn off. Unless it loses its freedom to work.

I’ve observed this dichotomy of teaching practices as long as I have taught, and been a student. Didactic, teacher-centered practices, and constructivist, student-centered practices: Is it a matter of personality, or of comfort with the content and methods being used to teach it? That makes a teacher prefer one or another? I’ve had (and observed) teachers who told me what to learn and how to learn it, then tested me on the results. Twice, in high school, I had teachers who threw out an idea, then sat back as I tried to find out more about it. I remember what I learned by finding out 60 years later. And the excitement of the learning. I carry no specific memories of learnings from the rest, except for things which personally interested me, like diagramming sentences. Which, odd it may seem, I loved to do.

The didactic teacher I had from fifth through eighth grades was the kind who told me what to learn and how to learn it all the way to the last days of eighth grade. Then, she started us on the way to pre-algebra by saying, “You don’t have to learn this. Just see if you can follow the argument.” Then, she wrote on the board the first algebraic expression I’d ever seen, a + 2 = 6. I looked at that for awhile and thought, “Wow! You can use letters to stand for anything! You could learn about anything with that!” A mind, at last free to explore.

For that brief moment, my stern, demanding teacher had become a facilitator. All by herself. That was 1952. Had her stern and demanding exterior reflected a lack of comfort with the content she was teaching and the methods used to deliver it; or, was her exterior reflecting the personality within? I can’t answer that question, but the obvious interest and enthusiasm she brought to the introduction to equations suggest she may not have actually been a stern and demanding person. It seems almost, from hindsight, relief to be free to teach as she thought she ought that I observed those very few days at the end of eighth grade. Today, more teachers have experienced being facilitators, but many have not. What would you need to become one? How can you find out?

At this point, I should leave you to find out; but, I’ll barge ahead with my own ideas, just as any didactic teacher would. Hoping all along that you’ll adopt a constructivist approach to the subject. That said, let’s start with my offering of three things a person who is a facilitator must have encountered and successfully engaged.

The first is probably the most difficult for a teacher to entertain – recognizing that people can learn on their own. When I first experienced this, I was in my first year teaching below college, in a 7th grade self-contained classroom. I didn’t know it at the time, but I had begun employing a constructivist teaching paradigm. It was hard, exciting work, yet I always felt the anxiety-producing peer pressure from colleagues whose view of school was students sitting in rows doing quiet seat work. Luckily, I had a very supportive principal, who encouraged what I was doing. And I applied what I had so far learned from raising my own children, that they do best when they are following up on choices they have made, which I had offered them, and which were within the limits I knew were workable.

So, what did I learn about using constructivist vehicles for delivering 7th grade curricula? About whether and how students can learn on their own? One, that this worked. At least, for me. They had two and a half hours each morning for language arts. During that tiem, they scheduled and worked on open-ended (but contained) writing and reading assignments. We also used speech and drama to engage active learning. (I didn’t know that’s what it is called; I simply knew it worked.) For instance, while working in groups to write and deliver one-act plays to elementary classes, they also learned the current language arts curriculum I had to deliver. Students became involved and invested in their work, and I noticed they also seemed empowered as persons. These were outcomes of the work; I wanted to know how this involvement and investment in their educations came to be. And that started my lengthy, often-interrupted journey into the human brain. A long stretch for me, with my background in intertidal marine invertebrate communities!

How would a constructivist science-inquiry delivery look in an actual classroom in two very different activities? The first is a microscope activity, where students observe for the stages of mitosis in plant cells. The second is a field activity, where students observe the effects of streamside vegetation on the temperature and dissolved oxygen content of the water adjacent to it.

When you employ a constructivist paradigm to organize the delivery of your curriculum, the students’ job is to construct the concepts you hope they’ll acquire by examining the pieces of the concept they are acquiring. Instead of you telling them the concept, they learn its essential parts by engaging them, and then use these parts to tell themselves the concept. A different way to teach; but effective. The first few attempts call for courage and confidence on the part of the teacher. And, in time, the patience to take the time to allow the learning to happen.

How does this play out? In the mitosis activity, you might start by projecting a slide of plant tissue containing cells whose chromosomes have been stained; the usual root cells most of us have observed. You have students pair up to do two things: Locate as many chromosomal configurations as they can and draw them. Or, if you know your students well, ask them to find out if there is any underlying order in the mish-mash of chromosomal configurations they see. This done, they are to organize their drawings in the order they think they occur during the progress of cell division. If you’re truly brave, you might ask them to find and draw other cellular evidence to support your placements. That done, they can present their findings, then go to the books and internet to find what other scientists have found about cell division. They will learn as much, or more, than you would have taught them. And moved further on the road to becoming life-long learners; explorers of the world they live in.

In the streamside activity, you ask each group to take a reach along the stream, then find out the effect of the vegetation on temperature and dissolved oxygen in the water along that reach. Nearly all students can do this. You can provide gentle hints about overhanging vegetation if necessary. The hard part of this work for you is locating a stream which has enough overhanging vegetation for the number of groups in your class. When they’ve collected the data, they find out what they can about temperature and dissolved oxygen, and relate that to what they observed. Next, they prepare presentations about their work, what their data tell them, and what next steps would be if they have discussed them in their groups. (Note that these are things the students and teacher do. To know what they think, we need to go into the brain.)

Eventually, with a constructivist approach to conceptual learnings, coupled with a didactic approach to things like safely lighting a bunsen burner or using a dissolved oxygen probe, I became convinced that this consistently led to solid learning. So, I slowly began to learn about the brain we carry with us, and the ways that it learns. What I found reinforced what I observed; validated it as a teaching paradigm based on real evidence. I had observed evidence over the years that students seeking answers to their own questions involved and invested them in their work; but that was just me, making observations and inferences. As I learned more about how the brain processes input from the world outside the body, I discovered that what I observed was real. Students get better and better at this. Probably quicker than you do. This relates to students as autonomous learners. Autonomous because they are pointing their needs to know, and following up on them.

The other two things a facilitator must engage, comfort with understandings of content, and comfort with developing effective work groups, are our responsibilities. Here is how I approached them. First, I recognized that they are, indeed, our responsibilities. Just as it was my responsibility to take college and graduate courses to fill the gaps in my understandings when I taught in college. Goes with the job. We’re teaching professionals, and that places the onus on us to do what is necessary to become comfortable with the content we teach. The only way to do that is to learn the content. We can take courses in it, work out an internship with someone who does the work, or teach ourselves. It’s an unfortunate fact of American education that we’ll be asked more than once in our careers to teach content we’re either marginally prepared to teach, or know next to nothing about. It will take all of us, working together, to resolve that.

When I finally decided to teach in K-12 schools, I knew nothing about teaching reading. I’d taken literature courses in college, but could only recall that we read, then discussed, then wrote papers. Not much help. I’d noticed in the few teacher education courses I’d taken that the most informative were the special education courses, so I enrolled in a course in corrective reading. It was taught by Colin Dunkeld, and delivered within a constructivist paradigm. (This was in the early 1970s!) I became comfortable enough to make my own decisions about teaching language arts. The corrective reading course was very hard and time-consuming work, but had a great payoff – confidence in content and comfort in delivery. That, and my life-long love of words helped me build a useful / effective / profitable / worthwhile7th grade language arts curriculum.

When you decided to do the mitosis and streamside vegetation activities, you marshallled together your understandings about those topics. You’d observed slides of dividing onion root-tip cells in a genetics course you took in college, and felt familiar enough with the process and observations that you would probably only have to review and practice to come up to speed in the mitosis activity. You’d also taken two botany courses because you’ve always loved plants, so felt you could understand the vegetation part of the overhanging vegetation activity. Temperature and dissolved oxygen in streams is new to you, so you decide to ask around about finding help. You contact the school district science specialist who recommends a field trip program which focuses on the riparian (streams and their banks) which includes water temperature and dissolved oxygen in its offerings. As a real bonus, the program includes measuring the effect of streamside vegetation on temperature and dissolved oxygen near the stream bank, and a field trip for you and your students. Offerings like the one described are fairly common! You do have to ask.

If your circumstances are different for your preparation to teach these two activities, how would you approach them? Leave your thoughts as a comment for others who will, you can be sure, be interested. Or, leave a question for me to answer!

Aside from knowing and teaching the learner inside each student who enters your door, your becoming comfortable with content and its delivery is something you cannot bypass. Its effect on your students is profound. Think of yourself as being assigned to perform as a heart surgeon, even though you’d never done it. Would you be satisfied knowing that, while you did have experience in knee surgery, you had none in heart surgery? Like surgeons, we directly affect the quality of our students’ lives, and must be certain we are delivering the best education possible. We can’t do that if we’re uncertain about our content understandings and delivery methodologies. Knowing is our responsibility.

If you know the learner who lives within your students, and are comfortable with the content you teach, then you’re ready to become comfortable developing and using what I call Effective Work Groups. These are small groups of students who know how to work together to accomplish tasks, and who can coalesce into larger groups to carry out projects. Humans are social beings, and can learn to work together effectively. Let’s look at the two examples of constructivist approaches to learning as they would appear from within an effective work group, or team. First, make the groups, then have each group discuss the work and decide how to organize it. After each session, they will discuss how it went, decide on any modifications, and then continue. When the work is completed, and it’s time to move on to more curriculum, they in their groups, then as a class, nail down what they know about effective work groups. (Be sure to call them that, and that they know this is a goal. Toward the end of the year, have them develop a description of effective work groups.)

Now, here is what one group has decided to do. Mitosis: Identify chromosomes; find different examples of chromosomes; each person will use a microscope because they all need to develop this skill; sort chromosomes out; declare the steps in mitosis; research what other scientists have found out about chromosomes; develop and critique their report; report to the class; assess their work. Communication is important here; one of the keys to becoming effective. You have them assess the role of communication in the effectiveness of their work after they have found and identified chromosomes, sorted them into a process, and have prepared their report to the class. They decide they’ll each observe their own slide, and will show others what they find and what they think it means. They assign tasks when they present. Streamside vegetation: They divide into temperature and dissolved oxygen teams; each team learns how to do the observation, then teaches the other group; then they divide the reach. After they arrive on site, they decide to assign a group of Mappers to map the vegetation. The group works on communication when they discuss data’s meaning, and divide jobs when they look up other scientists’ work on web and in books. You ask them to assess their roles in their group, and the outcome of their working together.

Active learning within a constructivist paradigm is effective, even at the college level. Many teachers engage it, but far from enough. It takes confidence in your students’ capacity for autonomous learning, and confidence in your capacity to do and facilitate this kind of work. And patience; lots of it. If you don’t believe students of almost any age can engage this paradigm, find a class of young students which uses it and observe them at work. When they are born, children possess wonderful potential. The environments they develop in determine, to a large extent, whether they will generate the capacity to achieve their potential. If their environment believes they cannot, more than likely they won’t. If their environment recognizes the learner within, they more than likely will. And feel this is normal.

jimphoto3This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests,and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”