by editor | Jan 19, 2020 | Schoolyard Classroom
Kindergarten students admire a sunflower held by an Oxbow Farmer Educator while snacking on carrots during their fall field trip. Photo credit: 2016 Jess Eskelsen
Science Through the Seasons
by Shea Scribner
Oxbow Farm and Conservation Center
Carnation WA
igns of the shifting seasonal cycle are all around us. Children are especially keen to notice and appreciate the changing colors of leaves, frantic activities of squirrels, and blossoms slowly turning to fruits on apple trees, but how often do they really get to explore these wonders of nature at the place most specifically designed for learning—their school? With so many subjects to teach and standards to meet, how can teachers follow their students’ passions and incorporate environmental education into their curricula? With an entire class of kids but only one or two teachers to supervise, is venturing outside the classroom a safe and productive use of precious class time?
Beginning in 2016, with funding from an Environmental Protection Agency grant (EPA grant #01J26201), Oxbow Farm & Conservation Center’s team of Farmer Educators and Frank Wagner Elementary School’s Kindergarten teachers dug into these questions to co-develop and teach monthly environmental education lessons in the classroom, around the schoolyard, and on the farm. Through intentional relationship-building meetings and workshops with the teachers, we worked to better understand the specific needs and opportunities we could address through the new partnership between our nonprofit organization and their public school. We found that by following the natural curiosities kids have about the world outside their classroom window, we could address curricular and behavioral challenges and build programs that both captivated the student’s attention and nurtured their enthusiasm for learning. The early learner-focused lesson plans and activities, best practices, and key lessons learned from the project now populate an online compendium on the Oxbow website. We seek to share our story with other formal and informal educators who are working to address similar challenges, and spark ideas for how to incorporate seasonal, developmentally appropriate, place-based environmental education into their practice.
The “Earth Connections: Science Through the Seasons” compendium takes the form of a beautiful tree, a fitting metaphor for a natural system where all parts contribute to the tree’s wholeness and growth to reach its full potential. The roots and trunk serve as the main base of support for plants, representing the foundation and core of our growing partnership with the school—take a peek into the planning process involved in this project, other organizations we partnered with, academic literature which informed our lessons and methods, and best practices for working with students and fellow educators. The branches growing from the sturdy trunk are specific place-based and Next Generation Science Standard (NGSS)-supportive lesson plans, suggested activities, and short videos recorded by the Oxbow educators, linking learning themes throughout the three seasons of the public-school year: fall, winter, and spring. With the overall goals of connecting lessons to the students’ specific environment and building skills of science investigation and inquiry, each experience was additive and built upon to together tackle the NGSS of K-LS1-1: “Use observations to describe patterns of what plants and animals need to survive.”
Much like our tree changed through the seasons, the students involved in the journey with us sprouted, grew, and transitioned throughout the school year. We invite you to channel the mind of a child as we guide you through the journey of a Frank Wagner Kindergartener experiencing outdoor EE with Oxbow and their teachers.
A volunteer farm naturalist asks kindergarten students about the crops they’re finding on the Kids Farm during a fall fieldtrip. Photo Credit: 2017 Jess Eskelsen
Fall:
Throughout this season, the remaining produce is plucked from Oxbow’s farm fields and pumpkins begin to turn from shiny orange to fuzzy black goo. As vibrant native trees and shrubs drop their leaves, humans and critters alike stash away the remaining treats of the season and work to prepare their homes for the cold, dark winter ahead. So too, young people across the region pack their backpacks full of snacks and supplies, bundle up in rain gear, and transition from summer beaches and sunlit backyards into the warm halls of their school every fall.
For some kindergarteners at Frank Wagner—a Title 1 school where many did not have the opportunity to attend preschool—the first time they transition into the fall season in the classroom can be understandably scary. The students are navigating a whole new environment, different schedule, and unfamiliar social expectations, all without the support of the primary caregivers whom they’ve relied on for so many seasons prior. Teachers are faced with the exceptional task of setting routines, helping every student feel safe, and helping students understand their role in their new classroom community. We found that many of the challenges of the early school year can be addressed through activities and practices that focus on building trust, sharing personal stories, and setting expectations for the new relationships students will build with teachers and one another.
Two students sit together behind large rhubarb leaves, playing a game of hide-and-seek (and finding hidden frogs and insects living in the field) during their spring fieldtrip. Photo Credit: Jess Eskelsen
Oxbow Educators visited the classrooms in the fall and collaborated with the students to construct a “CommuniTree” contract. Together, we used the structures of an apple tree to guide discussion of what sweet “fruits” both students and teachers hope to reap from their experience at school and on the farm, which “beehaviors” will help those fruits mature, and what obstacles to learning might be acting as big “rocks” in the soil, keeping the class’ roots from growing strong. We then began exploring the concept that learning can happen both in the classroom and outdoors through the Inside-Outside sorting activity. Students were given opportunities to express their own understandings of food and nature through prompted drawings, which we used as a baseline for assessing student growth throughout the school year. The Kindergarteners also came out to Oxbow for a Fall Farm Adventure, an introduction to how food grows and the many plants and animals that call a farm home, stoking their curiosity and excitement about the ongoing Farmer visits throughout the year. The fall season also included an introduction to the concept of “habitat,” a recurring and kindergarten-friendly theme that connected student learning about plant and animal needs throughout the rest of the year.
Winter:
For most of us on the west side of the Cascades, winter is cold, dark, and most of all, WET. Farm fields throughout the Snoqualmie River Valley rest quietly under risk of flood while puddles grow into lakes in school parking lots. Rain has shaped the landscape for thousands of years and water continues to connect rural farmland with urban neighborhoods. Dormant plants focus on underground root growth, and many animals must also conserve energy by hibernating or digging deep into warm piles of decomposing fall leaves to survive frosty temperatures.
An Oxbow Farmer Educator helps students find and sample tomatoes growing in a high tunnel during their fall fieldtrip, catching the tail end of the growing season on the Oxbow Kids’ Farm. Photo credit: 2016 Jess Eskelsen
Building on the relationships forged through the fall, winter was a time to begin channeling student’s excitement toward specific learning targets, helping them dig deeper into their wonderments and explore the systems connecting us to one another, and the greater planet we’re all a part of. With now-established routines and a classroom culture helping kids adhere to behavior expectations, students were ready to build on the basics and learn how to ask specific questions, make and share their observations, and consider new concepts. The weather during the winter months kept most of our lessons in the classroom, but certainly didn’t keep the kids from hands-on learning opportunities and ongoing nature connections!
Since things are a bit too muddy at Oxbow in the winter, we brought the farm into the classroom in the form of real live wiggling worms, giving students a chance to gently interact with the creatures as they sorted through the contents of their habitat during the Soil Sorting Activity. Students also identified what components serve as food and shelter for the decomposers to come up with a definition of what “soil is” and then used their observations to design and build a small composting chamber for the classroom. The teachers took this introductory lesson and built on it throughout the winter to address other parts of their curricula and learning targets: helping their students develop fine motor skills by cutting pictures out of seed catalogues and newspaper ads, then sorting the foods into those which worms can eat and those they cannot, and finally gluing their colorful collages onto posters and practicing writing the names of the foods in both English and Spanish. Further exploring habitats and plant and animal needs, we followed student curiosity into the schoolyard to investigate if the schoolyard is a healthy habitat for squirrels and learned how Squirrels and Trees help meet each other’s needs.
The Snoqualmie River flowing past Oxbow joins with the Skykomish River right near Frank Wagner to form the Snohomish River, a perfect natural connection to frame an investigation! As winter transitioned into (a still wet) spring, a Watersheds lesson helped to reinforce the link between farm and school, giving students a chance to work with maps of the actual landscape to trace the route of a raindrop as it would flow down from mountaintops and through interconnected rivers, and illustrate many human and natural features that use and depend on this water.
A kindergarten student carefully draws in her science notebook, documenting a specific apple tree she observed in the orchard. Photo credit: 2017 Jess Eskelsen
Spring:
Early-season native pollinators like blue orchard mason bees are a Farmer Educator’s best friend. Not only do these cute little insects help flowers turn to fruits and seeds, but they do so in a kid-friendly manner, hatching from hardy cocoons into adults friendly enough to hold without fear of a sting! With the warmer weather, students were able to spend more time outdoors exploring nature around the schoolyard and came back out to Oxbow to see how the big pumpkins they harvested back in the fall get their start as tiny seeds in the cozy greenhouse. With spring’s official arrival, the time had come for all that fall fertilizing and deep-winter pondering to transition into a growing, independent entity—be it a seedling or an excited student!
Springtime is a season full of vigorous growth and the kindergarteners were practically bursting to share with us all they’d been learning about through the winter. The students were ready to dynamically explore and understand the many connections between their lives, the farmers, and the plants and animals they saw popping up from the warming soils. Lessons in the springtime harnessed this energy by playing active games during multiple field trips to the farm and further investigating the nature around the schoolyard, all with a focus on connecting students more intimately with their sense of place.
Through an early spring field trip focused on Animals in the Water, students participated in a macroinvertebrate study, closely examining the “little bugs” that rely on cool, toxin-free water in the oxbow lake, and played games embodying the flow of nutrients through the freshwater food web these bugs are an integral part of. Their Spring Farm Adventure field trip and Orchard Stations had a focus on lifecycles and natural processes they could observe firsthand: how the buds on the orchard trees would soon (with a little help from the farmers, sunny and wet weather, and pollinators) become summer’s sweet fruits, and how the growing season for most food crops in this region is really just beginning as their school year comes to an end. As an end-line assessment of the student’s change in environmental understanding, we asked the students to again “draw a picture of nature” and were impressed to see the concepts of life cycles, interdependence of organisms, habitat needs, and where food comes from recalled and illustrated so eagerly by the students.
Our Tree
Behind every future environmental steward there is a spark of wonder which must be fanned to a flame, often with the support of dedicated educators and an array of tried and tested strategies. The Foundation of the tree includes a selection of Best Practices, which are continually growing. These ideas and strategies are intended to prepare students for outdoor science learning and provide teachers with the tools and skills to feel confident teaching in the outdoors.
Of course, none of the curricular branches would be strong without the solid structure of the trunk and roots. Building strong relationships with the teachers, school district, and other nonprofit partners throughout the project was integral to understanding the specific needs of the kindergarten classes and how informal educators can best support their in-class learning. We look forward to continuing to work with the students through this spring and beyond as we help build a school garden on their campus, giving students of every grade more opportunities to discover the magic of growing plants, harvesting food, and caring for worms and native wildlife. Our Earth Connections compendium will continue to be populated with additional resources and we hope to hear from educators like you about how you’ve used the materials, your recommendations for improvement, or ideas for expansion!
We are thrilled to share the fruits of this partnership with fellow educators and hope you find inspiration to continue exploring and learning from nature, both inside the classroom and around the schoolyard, maybe even taking a field trip to a local farm or community garden! You can learn more about Oxbow Farm & Conservation Center at www.oxbow.org.
About the author:
Shea Scribner is an Environmental Education Specialist and Summer Camp Director at Oxbow Farm & Conservation Center in Carnation, WA.
by editor | Jan 15, 2019 | Place-based Education
Photo courtesy of Mike Brown.
Not One More Cute Project for the Kids:
Neal Maine’s Educational Vision
by Gregory A. Smith
Lewis & Clark College, Professor Emeritus
PART ONE
eal Maine, now in his late-70s is an iconic figure for many environmental educators in the state of Oregon. Early in his teaching career in Seaside, he decided to shelve the textbooks in his biology classroom and base his teaching practice on the premise that “If we couldn’t do it, we weren’t doing it.” He then focused on getting his students outside onto the beach and into the estuaries of the northern Oregon coast as well as onto their city streets and into public meetings, believing that the way to stimulate deep engagement on the part of his students required personalizing what they were learning by designing educational experiences characterized by immersion, involvement, and meaningfulness.
Central to Neal’s approach is a belief that functional communities provide the authentic curriculum that should occupy the attention of educators and their students. The job of the teacher is to create experiences that provide young people with the opportunity to access the processes that make a community work. Also central is Neal’s belief that students are among a community’s most valuable intellectual resources. As he observes, “Where else in the community can you get 20 or more people in the same room that can do calculus?” Instead of teachers seeing their task as getting students ready to do something in the future, they ought to be engaging them in work and experience that is valuable to the community right now.
I first met Neal in the mid-1990s on a visit organized by my Lewis & Clark College colleague, science educator Kip Ault. Over the previous few years, Kip had worked with Neal in a variety of capacities and they had become friends. Well aware of my interest in environmental and ecological education, Kip figured I needed to get to know more about what Neal was up to.
The thing I remember most about that first meeting was Neal’s commitment to inducting children into the processes that citizens able to support a democracy need to know. He asserted that just as supportive strategies are put into place to teach kids how to play baseball (t-balls, pitching machines, smaller diamonds, fewer innings), similar supports and experiences ought to be used to teach young people how to be citizens. With regard to baseball, children learn how to play the sport not by reading about it but by getting on a baseball field and pitching, throwing, catching running, and making sure players on the opposing team are called out. The same kind of learning in context should happen in their community. To that end, he had overseen the development of memoranda of agreement with the city and county to tap children’s energy and expertise for community projects.
What I learned from Neal profoundly shaped my thinking about place- and community-based education and the impact that treating children as the citizens they are right now rather than in the future could have on both educational practice but also their civic practice as grownups. Neal claims that the most important thing children can offer to public dialogue is the fact that they aren’t adults; their thinking has not yet been fenced in by convention and conformity, and they have the capacity to offer fresh insights, creative solutions, and energy to the life of their community. Given my concerns about the link between schools and sustainability, I felt as though I had hit the jackpot.
Photo courtesy of Mike Brown.
Other people concerned about similar issues felt the same way after meeting Neal. When Paul Nachtigal, a widely respected expert in rural education from Colorado and the president of the Annenberg Rural Challenge, a national effort in the late 1990s aimed at helping schools and communities get better together, heard of Neal’s work, he quickly enlisted him as a board member of what was then a fledgling organization. I recently stumbled upon the business card Neal gave me when we first met, and it focused on this institutional association. I didn’t know anything about the Rural Challenge at the time, but I subsequently became a board member of the Rural School and Community Trust, the organization it morphed into after the initial funding from the Annenberg Foundation came to an end in the early 2000s. Both the Rural Challenge and then the Trust were advocates for place-based education and provided important support for early adopters of this approach, an approach influenced in important ways by the work Neal had been imagining and then enacting from Cannon Beach, Oregon to Long Beach, Washington.
In the summer of 2013, Neal invited me to spend another day with him at the coast to acquaint me with some of the projects that represented the essence of his work as an educator. As he mentioned at the time, he didn’t know how much longer he’d be around, and he wanted to make sure that some of his ideas outlasted him. He hoped that deepening my own knowledge about things he’d done and helped start would increase the likelihood that this might happen. To that end, I recorded our conversation as we traveled from site to site thinking that it might eventually make its way into an article. A mutual acquaintance of Neal’s and mine, Sylvia Parker (formerly a Rural Challenge steward and now an education professor at the University of Wyoming), helped get the five-hour recording transcribed, and I finally got around to rereading, coding, and analyzing what was shared that day in the spring and summer of 2018. Larry Beutler at Clearing Magazine expressed a willingness to publish what I was able to distill, and I set myself the task of trying to capture some of the central principles that undergirded Neal’s work in the hope that other Pacific Northwest educators might continue experimenting with some of the practices that have inspired me and many others both here and elsewhere for years.
In addition to his work as a biology teacher and football coach at Seaside High School, Neal spent more than a decade supporting teachers interested in adopting his out-of-classroom approaches after being requested to do so by the superintendent of the local school district. His impact on students—often those he described as being too creative to plow through the regular curriculum—had not gone unnoticed. They sought out his classes because “they had heard rumors that you got to do something there” and wanted to be part of the action. What they got to do had really meaning and purpose. While on the surface their work could be seen as little more than a “cute project,” what was actually happening went far deeper. They were being shown that their voices mattered and that their community could be made better if they spoke up and got involved. The following collection of place- and community-based learning experiences are emblematic of the educational vision Neal nurtured in the district.
A Compendium of Educational Experiments
Little Pompey Wetlands. Little Pompey Wetlands is located just a few blocks from the town center of Cannon Beach, a resort community nine miles south of Seaside. Somewhat more than two decades ago the city was interested in developing a nature trail for residents and tourists in the vicinity of the wastewater treatment facility and had hired a consultant to assist in this project. Aware of this effort, Neal approached the city manager about whether students might be able to participate in some aspect of this work as a means of honoring the memorandum of agreement that called on city and county agencies to make use of students whenever possible. The city manager was interested; Neal then found a teacher willing to rework her spring curriculum so that many of its goals could be met through the project. They presented their plan to the board, gained permission to proceed, and then with the students decided to create a sign about the wetlands and its species that could be shared with visitors.
This project required not only gaining knowledge about wetlands ecology in general and the variety of plants and animals found in the area (including birds such as red-winged blackbirds, shovelers, eagles, and fox sparrows, and during the winter, an occasional coyote or Roosevelt elk) but also the tasks of writing the text for the sign, naming the wetlands, overseeing the spending of $2000 allocated for the sign’s production and development, shaping and assessing the work of the artist hired to realize their vision, and selecting a sign maker to produce it. In most conventional classrooms, this process would have stopped with knowledge acquisition and most often a test or perhaps individual or group reports. In this instance, students not only had to collectively determine the most critical information to display; they also needed to act as a citizen committee responsible for the wise use of public dollars and as the employer of adults who had contracted with them to fulfill specific services. A project like this treats students as the citizens they already are and gives them the opportunity to practice decision-making skills generally reserved for adults, a task few people, regardless of age, have been prepared for in school.
Naming the wetlands introduced a whole new realm of adult activity when students and their teacher learned they couldn’t simply give a name to a wetlands but had to go through a complex legal process. Investigating other wetlands in Oregon, they could find none that had been named after a child. An earlier unit had acquainted them with Sacajawea and the Lewis & Clark Corps of Discovery; they decided to honor her infant son Little Pompey by naming the wetlands after him. Their commitment to a name they had chosen themselves propelled them through the legal requirements of the state and introduced them to processes often required to accomplish meaningful work in a community.
Democracies depend on the capacity of citizens to engage in civic life in these ways. Not uncommonly, the knowledge required to do so is limited to people whose parents understand the rules of public participation since these skills and insights are not made available to the general population in any systematic way. By giving school children the chance to acquire such knowledge and skill, educators like Neal Maine are inviting a broader group of people into the decision-making process and cultivating in them the ways of thinking, speaking, and acting needed to accomplish tasks they believe to be important. More than simple participation in marches and demonstrations, as important as these activities might be, “this is what democracy looks like.”
Friends of Haystack Rock. Central to Neal’s educational approach is its emphasis on the value of finding ways to situate learning experiences outside the school in the community or region, and in some instances creating new institutional structures to accomplish this end. Fittingly, the next part of our tour took us to a bluff overlooking the beach beside Haystack Rock, Cannon Beach’s geological claim to fame. Scores of people were clustered in small groups on the sand, looking through viewing scopes, examining displays on tables, listening to presentations. Neal explained that what I was seeing was the work of staff and volunteers at the Friends of Haystack Rock, an organization that has a cooperative agreement with the city to provide interpretive services to locals and tourists interested in learning more about the natural features of the area. Special attention is directed to the lowest tides of the year during the spring and summer when the marine gardens surrounding Haystack Rock are more accessible.
In existence now for more than 30 years, Friends of Haystack Rock grew out of Sea Week, a project Neal had started in the 1980s. During Sea Week, regular classes were suspended and students from throughout the school district would make presentations to the public about projects they had completed related to their home environment with the aim of preserving and protecting it. Sea Week as it was implemented then no longer exists, but the Friends of Haystack Rock essentially provides the same kind of educational experiences but over a more extensive period of time with the support of volunteers, many of whom are young adults. Its volunteers also become the teachers of the community’s children about marine resources, offering programs both in classrooms and then on the beach. Although the school district ended up not supporting this effort over the long-term, its advantages were apparent to city leaders and an ongoing collection of volunteers who have sustained it now for three decades. Given the fickle and short-lived nature of many educational reforms, organizations like the Friends of Haystack Rock offer a way to perpetuate educational experiences aimed at enhancing the public’s knowledge about their region.
Coastal Studies and Technology Center. For ten years, the Coastal Studies and Technology Center, located at Seaside High School, offered another way to strengthen the relationship between the school and community. Under the leadership of science and technology teacher Mike Brown, students were able to get course credit for engaging in research projects requested by either the city or even federal agencies like the Environmental Protection Agency. The Center provided the workspace and intellectual support that allowed students to contact resource people at the police department, the local hospital, or other governmental offices. One group of students, for example, investigated the economic impact of the Seaside youth riots that occurred over three Labor Days in a row in the early 1960s. I accompanied another group of Upward Bound students working through the Center one summer day in the early 2000s as they mapped the location of woody debris in the Neawanna estuary. Using GIS equipment, they tagged and identified the location of the debris, data that were later recorded on maps of the area that would be used to preserve and enhance salmon habitat.
The Center functioned as a non-profit entity within the context of the school. Its success in pursuing grant dollars and its independence from traditional decision-making structures in the district, however, led to the imposition of constraints that eventually resulted in a narrowing of its focus to technology education. Still, for several years it demonstrated the way that an organization that treats young people as researchers and actors rather than passive recipients of knowledge passed down by others can create engaging learning experiences and do so in ways that benefit others.
Earth Odyssey. Neal was also instrumental in encouraging two fourth grade teachers at the elementary school in Gearhart, a small town just north of Seaside, to collaborate on the creation of a curriculum grounded in the history and natural phenomena of the north Oregon coast. Modeled on a summer camp program called Sunship Earth, the teachers ended up naming their year-long educational adventure, Earth Odyssey. The day of my tour, we met over lunch with Jan Weiting, who had taught in this program for three years. The work of Jan and her partner Larry Nelson exemplify ways that Neal’s vision can be incorporated into the classroom over the course of an entire year. Students’ work in the fall, for example, started with a study of entomology. They moved on from there to the archeology of the North Coast and the Indians who have lived in the area for over 10,000 years, Lewis and Clark’s experience of spending the winter at Fort Clatsop a dozen miles north of the school, and then on to the mountain men and the Oregon Trail. Nearly all of the traditional subjects could be taught through these broad topics tied into the district-prescribed curriculum for fourth graders. Over and beyond this curriculum, students planted trees that are now a small forest outside their portable classroom, painted a mural on one of the building’s walls, and dug and planted a pond. After school Jan and Larry would take smaller groups of interested students on additional field trips to investigate things like sea kelp or to lend a hand with conservation projects, learning activities that brought them recognition as conversation educators of the year by the US Department of Agriculture.
An especially significant activity involved the annual publishing of the Coastal Geographic, a collection of student writing based on interviews with local characters like a famous clam digger. As Neal observed, “The interviews of the people were just so personal and written in such a way that only a kid could talk about, the ordinariness of a person as opposed to the world record they just set.” Although only published for three years, the Coastal Geographic served as a model for the Neawanna Journal, a project that was adopted by a high school teacher who worked with students who were potential dropouts. The students interviewed people who had been born on the Neawanna River in the 1900s, took photos, and wrote up their stories. Their efforts won them an award from the library delivered at a public reception. Neal remarked that “The kids had so much ownership, it was just fabulous.” He added, however, “What sense does this make to have to be so bad at school that you get to produce something that the people who are really good [at school] wouldn’t have a chance at?”
Other Neal-inspired learning experiences. During his years as a teacher support staff in the Seaside School District, Neal found many ways to provide similar instructional opportunities to a broad range of students. One year a group of seventh-grade teachers approached Neal about helping them get funding to take students from their health classes to Portland to see the “plastic lady” at the Oregon Museum of Science and Industry and learn more about bodily systems. Neal persuaded them to pursue a less expensive and potentially more productive idea—a health fair the students would put on for senior citizens in which student groups would be responsible for running booths focused on physical systems like digestion or circulation or respiration. Willing to try out this idea, teachers enlisted the support of staff at the hospital to instruct students and provide equipment like respirators and blood pressure machines they could legally use with people who visited their booths. A day was then set aside for the fair, advertising went out to the public, and arrangements were made to hold the event at the senior citizens center. The fair ended up being well attended by community elders interested in helping the kids. When Neal heard one of the older teachers saying “It’s the first time I’ve ever really enjoyed seeing kids fight,” he asked about what she was talking about. She said. “They were fighting over whose turn it was to do the test next.”
Another year, a seventh-grade social studies teacher got in touch with Neal about a project he had in mind that was not much different from the trip to see the “plastic lady.” Neal explored ways that he might do something that required more involvement, and together they proposed to the Seaside City Council that students audit the decades-old city charter, something the mayor didn’t even know existed. Drawing on the six career themes that were then central to the Oregon’s educational reform—industry and engineering, natural resources, human resources, health services, arts and community, and business and management—the teacher had each of his six classes take on one theme and compare what was written in the charter to what the city was currently doing. The students early on realized they’d need support to do credible work, so they designed a resource list of people they then invited to their classes. They went on site visits and synthesized what they were learning into a presentation.
At the end of the term, the mayor called the city council to order in the middle school gymnasium. With 137 people in attendance, it ended up being one of the largest city council meetings in the history of Seaside. As Neal remembered, “The kids started going to the microphone and presenting their audit results. Some of them were pretty harsh.” The school district, in particular, came in for some major criticism for its failure to spend the required one percent of money allocated for building projects on public art. The students noted that not one dime had been spent on art during a recent $7 million remodeling effort, something that shocked them after documenting the art works that had been incorporated in other local city and state building projects.
On earlier visits with Neal I’d learned about similar projects taken on by teachers and students from elementary school to high school that gave children and youth the opportunity to do school work that showed them what it means to be an involved citizen. Fourth graders one year visited a number of the parks in Clatsop County and then made recommendations about new playground equipment during one of the public meetings of the parks commission. Middle school science students did a species survey at an old mill site the city hoped to turn into a public park with federal urban renewal funding. High school pre-calculus students used trigonometry to determine the dimensions of all of the buildings on the tsunami plain so that emergency planners could use new software to determine the impact of smaller and larger tidal waves. Another group of fourth graders surveyed their families and neighbors about whether they changed the batteries in their smoke detectors when daylight savings time comes to an end in the fall. The possibilities for investigations like these are nearly endless; all it takes is the willingness of teachers to be alert to them and for community organizations to value and then make use of the intellectual resource provided by public school students.
Asking/answering questions of the world
Beyond inducting children and youth into the processes by which a community governs and cares for itself, I learned about two other elements of Neal’s educational vision on our tour that are worth discussing. The first of these is tied to his belief that the curriculum should in part arise from questions that children raise about their world. Early on in his career as a science teacher, Neal decided that restricting instruction to textbook experiments people already knew the answer to is a recipe for disengagement and boredom. What is critical instead is acquainting students with the value of raising questions that can be answered through the systematic gathering and analysis of data. For elementary school students, he designed a process to convey this understanding.
Students were asked to predict where a rubber-tipped dart shot from a toy gun taped to and stabilized on a tripod would land on a classroom wall. The first stage was to draw a circle that you knew the dart would hit. Some students chose to include the entire wall, absolutely guaranteeing success; others were more precise. Then they conducted the experiment. The next step was to refine their prediction, something that required discussion and decision making. Eventually they found that the gun fired pretty consistently and would hit a point within a three-inch circle. As Neal observed, “What they found was testing is so valuable, getting data, because it makes your answer so much better. So simple. But for fifth grade, it was perfect. It was fun and it was interesting. They’d never gotten to shoot a dart gun in their classroom before.”
With this understanding in hand, Neal would encourage students to then ask questions of things like their watershed and design experiments or procedures aimed at answering them. For example, one day a student said that when he was out hiking with his family, his grandpa said that moss always grows on the north side of the trees. He wondered whether this was right or not. The teacher and class ran with the question and designed a project that involved taking acetate sheets, cutting them the length of the circumference of a tree, pinning them in place after checking and marking the four cardinal directions, and then recording with different colors the location of lichen, moss, and any other growth on the tree. All of this teacher’s classes ended up doing the experiment in a forest close to the school, so there were hundreds of acetate sheets. Once they had all been collected, the sheets were then laid with those on the north side lined up, allowing the students to determine how much moss or lichen grew on different sides of trees in at least this one forested area. What they discovered ended up being published in the Seaside newspaper.
Other questions led students to design experiments aimed at determining what kind of material was falling from trees in the forest. They strung up 10 feet by 10 feet tarps from trees, put a rock in the middle, and then left the tarps alone for 48 hours. They came back and swept everything that had accumulated into the middle and took what they collected back to the classroom. They then examined what was there through a stereoscopic microscope. Neal still gets excited about what they discovered: “That one was mind boggling because the number of insect larvae was shocking. It was amazing that there’s tons of stuff falling out the trees that you don’t see.” The students also wondered about what it is about the soil in a forest that allows it to produce so much vegetative matter. The teacher invited soil scientists into the classroom who taught the students about the constituents of soil, itself. The scientists were followed by a master gardener who helped the kids gather the appropriate materials and make their own soil that was then placed in raised beds. They planted seeds, and the experiment was under way. “The idea was they’d learn the scientific method as a result of trying to get, pry, answers from the landscape.”
Expanding the boundaries of home
Beyond inducting students into the processes that govern their own community, Neal believed that students’ school experiences should ideally lead to a recognition of their home community’s relationship to other towns and cities in their region. As a former football coach, he had been concerned about the way that most interscholastic contact focuses on “beating the crap out of Astoria and all that kind of business.” He wanted students from different communities to recognize the value of learning from and working with one another, as well. On the day I spent with him, he told me of three projects that sought to achieve this end.
Towards the end of the morning, much of our conversation took place at an elementary school on the outskirts of Seaside on a hill up above the tsunami plain. This location was ideal for the educational experiences described above because of the proximity of the forest but also the proximity of Coho Creek, a salmon-bearing stream partly located on school district property that feeds into fresh water marshes and then the salt water marshes where salmon undergo the transition that allows them to become fish capable of living in the ocean. Neal and teachers at the school quickly saw the learning possibilities of this site, turning it into a watershed education center for students from other schools. After learning the ins and outs of the salmon life cycle, Seaside students became watershed guides for fifth-grade students from Knappa and Astoria, towns to the north. For Neal, this kind of opportunity made it possible for students to have experiences that helped them recognize their kinship with peers in other schools in the same region.
The inspiration for the second project was a 1974 issue of Life Magazine that featured photos aimed at telling a story about what happened in the United States over the course of a single day. Neal figured that something similar could be done for the “Columbia Pacific region” stretching from Seaside and Jewell and Warrenton in Oregon up to Ilwaco and Long Beach in Washington. After getting the Daily Astorian to agree to print and publish it, staff from the paper led a workshop that was attended by 74-75 students from the region. The plan was to send these students out for 24 hours on the day of May 4, 1999 to document photographically what they saw happening in their community. The hope was that they would begin to communicate with one another as citizens of a common region. With their cameras in hand, students found that people gave them acceptance and access as they captured their fellow citizens milking goats, making taffy, cutting trees, docking a fishing boat. Few of the students had ever spent a day in their own community just observing and speaking with people they didn’t know. After this experience, one girl said that “she gave up her old eyes” and had come to realize that she lived in a kind of paradise. The project turned out to be “monumental” according to Neal, being written up in The Oregonian, the state’s largest paper. It was also selected for a Library of Congress journalism program with which the Daily Astorian was involved.
A project with a similar aim was called “Crossing Boundaries.” It involved students from five middle schools throughout the region who were asked to develop a transect across the entire Columbia River based upon the collection of bottom samples. To do this work, students had to learn how to run a boat in a straight line using GPS equipment across a few miles of river. Mastering this skill this took a couple of days. Then, with a boat captain standing behind them, some of the students kept the boat on course while their compatriots dropped scientific gear into the water and gathered data. The report based on their findings, “New Designs: Youth Voices Building Communities,” touched on important land use planning issues for the region and became the foundation for subsequent investigations, like strategies for protecting beach areas inhabited by sanderlings, a kind of small sandpiper. What is striking about these projects is their creativity, the depth of learning they elicited, and the meaning they possessed for both student participants and the people throughout their region.
CLICK HERE FOR PART TWO
Greg Smith is an emeritus professor who taught for 23 years in the Graduate School of Education and Counseling at Lewis & Clark College. He’s keeping busy in his retirement serving on the board of the Great Lakes Stewardship Initiative in Michigan and the educational advisory committee of the Teton Science Schools in Wyoming; at home, he’s co-chairing a local committee that is seeking to develop curriculum regarding the Portland-Multnomah County Climate Action Plan. He is the author or editor of six books including Place- and Community-Based Education in Schools with David Sobel.
by editor | Nov 22, 2016 | Learning Theory
Understanding Ecosystems is a Real Need:
Will we help today’s kids learn what they ought to know about ecosystems?
by Jim Martin
CLEARING Writer and Contributor
ids in school today, and their children, need to understand ecosystems, and their own place within them. And teachers need to possess the capacity to ensure this can be accomplished. A recent study published in Science, (Vol. 351, Issue 6274, 12 February 2016, pp. 664-665) indicates that US teachers are not adequately prepared to teach about global warming in any detail; nor, for many, with confidence that it is even happening, or is caused by human activities. And, how many know with confidence how local ecosystems will respond to global warming? This is, I submit, knowledge and understanding that our students need. As important as technical and engineering knowledge and understanding, which receives far more attention in our society than ecosystems.
This is a poor state of affairs. Ecosystems aren’t simple; nor is global warming. How many teachers, or citizens for that matter, know that the Earth’s current orbital position and ‘wobble’ about its axis indicate that we should be in a long cooling, not a warming, period? How many know the length of these periods during Earth’s journey around the Sun? Or their effect on ecosystems; ecosystems which support all life on Earth. Not to mention the human population explosion, which is the driver of much of this warming process. How many teachers spend quality time each year on these topics? How many feel free to do so? They need help. And help is what we can offer them.
How can our teachers bring themselves up to date on the complexities and importance of global warming? What resources do they have available? If you were to check the New Generation Science Standards (NGSS) web site, you might be surprised. I just checked the Oregon Department of Education’s web site, and found nothing in the teacher resources section that could be used to support student learnings about ecosystems, global warming, or the human population explosion. The NGSS web site has the same paucity of resources for teachers, although they do note that some resources will be forthcoming. NGSS and the National Science Teachers Association web sites offer resources like worksheets and ties to the standards for the content the worksheets cover, but there is nothing I can find that offers teachers without strong backgrounds in science an opportunity for in-service training which will prepare them to teach ecosystems so that they are understandable. The same is true for the in-service support teachers need to attain the conceptual understandings which underlie competent teaching. We, the people who teach, or have taught, in our classrooms are the ones who will have to do this work. We need to start.
I submit that this state of affairs means the NGSS (and CCSS) need to become more expressive; to become useful, descriptive, aids that teachers can rely on to support their efforts in teaching a complex environmental curriculum. We can’t ask the federal or state education organizations to do this, but we can do it ourselves. Taking it one step at a time. Environmental educators know their sites and the science and math involved in understanding them. They may not currently discover and use the curricula which is embedded within their sites. This is where those teachers who, together, have this experience can help. Environmental educators and teachers, working together to exploit curricula which is embedded in natural environments. To learn about ecosystems. What if a few teachers and environmental educators got together to talk about how they could work together to use a study of ecosystems as a vehicle to drive curriculum in other content areas? A conversation in which they cover broad topics students would need to work with in order to learn about ecosystems, coupled with conversation about particulars of other content areas that could be integrated into the study of ecosystems.
For instance, while studying a forest ecosystem, students at any grade level could count the number of each species of tree they find. Then, depending on their math capacity, they could draw a representative of each of the tree species, with the size of each kind based on its population count. They can add the numbers counted to get the total trees counted. They could subtract the number of the first species from the total; then the second, and on to the last. What is left? They can develop fractions and do the division built into a fraction’s structure, to calculate the decimal fraction which says the same thing. They could multiply each divided fraction by one hundred to calculate the percent that kind of tree is of the whole. They could use the counted numbers of trees, their total and the number of each species, in an equation to calculate species diversity. That’s just a smattering of the math curricula embedded in one activity in a natural area. And the concomitant standards embedded there along with them. How do teachers take these pieces of math to a larger mosaic which enables students to attain the conceptual understandings which prepare them to deal with global warming and ecosystems? What can you imagine for all of the other content areas taught in your schools? What we teach is in and of the real world, that place outside the classroom. Can we use it to learn?
Would you be interested in engaging a substantive conversation about how environmental educators and teachers can work together to do a better job of teaching mandated curricula while building students’ knowledge and understandings of ecosystems? If you’d like to contribute to a conversation on this theme, you might write an article for Clearing, write a comment in the space below, start a conversation where you are, or decide to try this yourself. If teachers know environmental educators, or environmental educators know teachers, you can present the concept at environmental education and teacher annual conferences. For myself, I’ll continue to write on this theme. And contact my regional environmental and teacher organizations to suggest it. We all need to do something. The kids need that.
Jim and Dryas Martin 604 E. 28th St. Vancouver, WA 98663 berrywd@teleport.com home.teleport.com/~berrywd/index.htm
This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests, and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”
by editor | May 24, 2016 | Learning Standards, Learning Theory, Schoolyard Classroom
Use the Real World to Integrate Your Curriculum
In today’s test-driven schools, there’s little room for including the world outside the classroom in the curriculum, even though school is supposed to be based on the real world. And prepare us for it.
by Jim Martin
CLEARING Associate Editor
his year I watched good classroom programs which involved and invested students in the learning they were doing come to a halt for several weeks so they could prepare for the standards tests. This, during what is the best teaching time of the school year: January through March, when there are very few breaks in the schedule, and teachers can concentrate on the delivery of curricula. Somehow, we have to wake up, get back to our senses, and use this time for learning.
That said, students do need to go out into the world to learn. Let’s look at two possibilities, the first in a stream, the other in a school yard. We’ll do the stream first, since it is the kind of place we ought to be going to. Then the school yard, since it is often the only alternative we have.
There are many places where students can find a streambank to explore. Or a wooded area; an open meadow; some place where they can see and count the organisms who live there. Then learn about them. These are wonderful places for students to engage new content via Active Learning. There is one, a small stream, near where I live. Here’s a list of some of those who live there: Salmon fry (very small, recently hatched, eat copepods); Copepods (eat algae and organic debris); Amphipods (eat organic debris, algae); Mayflies (eat algae, organic debris); Caddisflies (eat organic debris, algae, mayflies); Organic debris (this is dead and decomposing organisms on the streambed); and Algae (plants found on the streambed and submerged rocks). This list of organisms and information about them is abbreviated, mostly out of necessity; this is a blog, not a book!
Why Employ Active Learning?
Active learning is the best way for humans to learn. It entails having a learner-generated reason to find out something, and access to the resources which will help them find out. Finding plants and animals in a riparian area always stimulates students, and easily leads to conceptual learnings. Providing their teacher is comfortable with this way to learn. This is because noticing something in the world outside your body that catches your interest can, if you’re allowed to follow up on noticing, engage your prefrontal cortex and the machinery it employs in critical thinking. That builds brains. We need to do it.
Let’s say you find a stream near your school which has been restored, and supports a small salmon population. Your class can make a round trip to it in 20 minutes, which leaves time to make observations each time they visit. When they make a visit, they’ll group to study macroinvertebrates on the bottom of the stream, algae on the stream bottom and rocks, and animals living in the water column who will fit into a small net. Next, they’ll organize themselves to learn to identify the organisms they’ve found, and find out what the animals eat. This is an opening to several NGSS standards: Let’s look at four, one each from K-3, 4-5, 6-8, and 9-12. (I haven’t started this yet, but it should be doable. It’s all LS.) So, while they’re gathering data to build a food web, they can also be embarking on an integrated curriculum about diversity, thermal tolerance, diet, a John Steinbeck novel; whatever is coming up.
For K-3, look at K-LS1-1: From Molecules to Organisms: Structures and Processes, in which students use observations to describe patterns of what plants and animals (including humans) need to survive. In this case, building the food web helps students answer the question of what do living things need to survive. That might also lead to learning how some organisms not having enough to eat might affect their food web.
For 4-5, try 5-LS2-1: Ecosystems: Interactions, Energy, and Dynamics, in which students develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. In this case, when one species becomes scarce in its ecosystem, then is lost, this affects the movement of matter in its food web. In doing this, it also affects species diversity. This might lead to learning more about diversity, how we determine it, and what it provides for the species in a food web.
For 6-8, try MS-LS2-4: Ecosystems: Interactions, Energy, and Dynamics, in which students construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations. This might lead to learning more about how their food web reflects ecosystems, and some of the biotic interactions which affect them. Middle school students might also use their food webs to approach another NGSS standard, MS-LS2-5: Ecosystems: Interactions, Energy, and Dynamics, in which students evaluate competing design solutions for maintaining biodiversity and ecosystem services. Again, they learn how to assess biodiversity, and apply those learnings to their food web.
For 9-12, try HS-LS2-6: Ecosystems: Interactions, Energy, and Dynamics, in which students evaluate the claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem. For instance, they can use their food web to learn about thermal tolerance, and how it might cause the loss of one or more species in their food web. Then they might even search the literature for current evidence that, as species move from one ecosystem to another due to the stressors involved in global warming, they are replaced by other species, more tolerant of the changed thermal regime.
Can you engage active learning?
All of these can be enhanced with lab and field activities. This is in addition to the learning each group of students engages. Because they’re learning about particulars they have engaged in a stream, these learnings will become part of a readily accessible conceptual schematum, rather than a smorgasbord of disconnected facts.
Pick one of these which doesn’t seem overpowering, look it up on the NGSS web site, and try it out. Read what the NGSS says about it, then think of what you understand of food webs, and see how you can put the two together. When you’ve done that, then see what area of science you will soon be teaching, and see how you can use the NGSS description plus what you know of your food web, to integrate all into a workable unit to teach.
While the NGSS documents don’t often refer to food webs, there are some references to them at the elementary, middle, and high school levels. You can just do a search for ‘food web’ to find them. I’ve used the labels and titles, and the descriptions from the NGSS site in this writing. But I’m uncomfortable with the bureaucratic way they describe a very vivacious, dynamic, interesting system. A food web is one place where much science can be effectively addressed. Then, instead of learning facts about systems, students develop conceptual schemata which tie many areas of science together in meaningful concepts, ideas of how the world works.
We’ll use the organisms I found at the stream near my home for the next step; and that is to build a food web for this riparian area. As in all studies like this, the data collected will apply to just my reach, not the whole stream. To be more confident that my sample represents the stream, I’d have to sample more reaches. This collected information can then be used to construct food webs for that extended reach of the stream. Here’s one for the stream near where I live. (I had to look in side channels and slow waters near the stream’s edge to find the fry. Then, lacking time to complete the sampling, I looked up their diets on the web. I used this information to construct the food web in Figure 1.)
Figure 1. A Riparian Food Web. Elements of the food web are organized by trophic level.
While I’ve named each organism just once, I’ve grouped larvae, both young and mature, in one place, even though they might show up within more than one trophic level if I have considered all of the stages in their lives. And for some, there are more than one species gathered under a name. Considering all species and their life stages would make a more complex, but more informative food web if done with more attention to these details. You can take this as far as your students can comprehend or stand. Complexity increases comprehension up to a point. Beyond that, learners are on overload, and their work isn’t effective. This information/concept overload point is different for each student. You can overcome these differences in capacity by parceling out the work according to each student’s capacity and instructional level. And interest!
You’ll find that active learning is evident in the negotiations within groups as they sort out the pieces of their food webs. As they learn more details about the organisms, their conceptual understandings grow exponentially. And their food webs become more complex, and more meaningful.
Now, we’ll go to a school yard to build a food web. It may not be a riparian area, but it is an area we can study nonetheless. (When I taught inmate students in the college program at the Oregon State Penitentiary, they were able to discover and report data on food webs found in the prison’s exercise yard, an ecosystem where there were no trees, shrubs, or streams. We, too, can do this, without going to prison.) Natural areas are the best to study, but as a workable alternative, you can do an effective study in your own school yard. For lots of us, this is a more workable alternative than field trips to a stream or forest. Take a look. What can you find? Jot down their names, or make names up. (As you learn their actual names, update your food web. This tactic works well with students.) Make an initial food web from your observations, then amplify this with information students research. (Food webs are easier to assess in fall and spring, when the organisms are there in greatest number. However, as compost piles remain warm in their interior, you can probably assess them any time. Be sure to cover them back up!)
Here is one I made up as an example. It’s based on what you might find in a compost pile in a corner of the school yard. If you’ve ever rummaged a compost pile, you’ll know that this is a much simpler food web than you’d find in most compost.
Figure 2. A Schoolyard Food Web.
Food webs, by themselves, provide a visible platform for thinking about organisms and their ecosystems in a dynamic, conceptual way. Both species diversity and thermal tolerance can be effectively introduced via a food web. Thermal tolerance can affect diversity as species move from an ecosystem where temperatures have gone from within their thermal tolerance range to one which offers a better thermal regime. Diversity can attenuate the effects of thermal tolerance limits by reducing the effects of losing a food web species. The more diverse the population, the better the chance that other species will utilize the food sources that the departing species exploited. And might be exploited by the same consumer which consumed the species which departed. Like the visible, dynamic structure of a drawn food web, these two biological phenomena effectors of ecosystem stability live in a dynamic relationship with one another.
So, what will they do with their food webs? In the next two blogs, let’s look at diversity first, then thermal tolerance. Both will provide valuable insights into the effects of global warming on living things; which is something our students need to become experts in.
This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests, and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”
by editor | May 26, 2015 | Outdoor education and Outdoor School
Tips for bringing students into the field: Strategies for success
By Joshua Klaus
Director of Academic Programs, Ecology Project International (EPI)
aking students into the field can provide an endless array of occasions to learn new skills, see theoretical concepts enacted, make connections, and learn about the world around us. Given the endless places that offer valuable learning opportunities, it must just be a matter of heading out the door for students to have impactful educational experience, right?
Though it would be nice if it were that easy, there are a few key strategies that will allow any educator (novice or veteran) to make the most of their time – before, during, and after their field experience.
Educators will have a higher likelihood of success if they keep the following things in mind:
• Go outside! The natural world offers limitless educational opportunities. Given the amount of time students spend in front of computers, screens, and isolated from weather, plants, and animals, exposure to the natural world is a fantastic way to engage students’ bodies and minds.
• Real-world projects: Involving students in applied research, service-learning, and conservation or community-related projects will give them a sense of connection to something larger than themselves.
• Find good partners: Working with established land managers, non-profit organizations, or government agencies can help provide additional resources, information, expertise, and motivation.
• Incentivize good work: Offer students school credit, lab hours, or community service credits if they meet or exceed your expectations while in the field.
• Have fun! Focusing on specific learning outcomes is a good idea, but balancing learning with fun, exploration, and freedom will increase the likelihood that students will have a positive, meaningful experience.
Preparation:
As the old adage instructs, failing to adequately plan and prepare often means planning for failure. Preparing students for a field experience is of paramount importance and should include setting clear expectations about goals and behavior, in addition to providing students with the tools, background, vocabulary, and knowledge necessary for success and high-quality outcomes. Advance preparation might include proper gear and equipment, safety protocols, practicing field methodology in advance, and providing a theme or integrating context for learning. At the very least, prior to heading into the field students should be given a structured opportunity to determine what they already know about a particular place or activity in addition to the chance to articulate what questions they have and what they’d like to learn. This could be as simple as asking students to draw a picture, make a list, or tell a partner what they know about a concept. Additionally, individuals could make a K-W-L chart, and the entire group could share the information in the ‘W’ column.
Adequate advanced preparation will help students stay comfortable, safe, and well-fed! By engaging students in managing risks they might encounter in the field – whether hiking on a trail or crossing a busy street – they’ll have a better understanding of the potential dangers they’ll encounter as well as the rationale for making appropriate decisions that will help keep them safe. When students understand why they should do something (instead of just being told they should) they’ll cultivate a deeper sense of ownership and personal responsibility.
Collaboration/ maximizing resources
Many organizations, government agencies, and companies are more than willing to host a group of visiting students. Call the local fisherman to take a tour of his boat, approach the university about a tour of the wet lab, or ask a conservation group to give an on-site presentation to your class about their restoration projects. Experts often love to talk about what they do and are happy to share their knowledge with students. When teaching in Oakland, CA one teacher took his physics class to a boat yard a couple blocks away and a crusty sailor taught them about mechanical advantage and pulley systems used for dry docking and offloading cargo. When the Pixar Studio in nearby Emeryville was under construction, his students crawled around the open foundation with a bunch of engineers who were delighted to tell them all about how they designed the building to withstand a 9.0 earthquake. Think creatively about what you consider a ‘field’ experience, and likely you’ll discover a long list of wonderful opportunities right within your community.
The wheel already exists
Talk to your local conservation group, nature center, government agency, or tourist outfitter about what you would like to do and ask if they can help. Many of these groups have some kind of educational mandate associated with their work, and if you can help them achieve their goals by involving your students in their work, they will likely be accommodating.
Go for it!
For beginning teachers, it’s a great idea to keep things simple until you establish a track record of success with your students and within your community. Start with small, accessible field experiences before making too large a commitment. That being said, despite the importance of preparation (as described above), don’t over-think your first field experiences. Once you’ve covered your bases and the basics, it really can be as simple as heading out the door. The world awaits, so don’t worry – once you get there, your students will thank you.