Maybe the problem wasn’t WHAT we were learning but WHERE we were learning?

Maybe the problem wasn’t WHAT we were learning but WHERE we were learning?

At-risk students are exposed to their local environment to gain an appreciation for their community, developing environmental awareness built on knowledge, attitudes, and behaviors applied through actions.

 

Lindsay Casper and Brant G. Miller
University of Idaho
Moscow, Idaho

Photos by Jessie Farr

n the last day of class, I walked with my students along a local river trail shaded by cottonwood trees and surrounded by diverse plants and animals. The shaded areas provided spots for us to stop, where students assessed the condition of the local river system and the surrounding environment. The class had spent the previous week by the river’s mouth, and the students had grown a connection to the local environment and to each other. This was evident in their sense of ownership of the environment and their lasting relationships, which were expressed as the students discussed what they had learned during the class.

A month earlier, the class began differently. The students were focused on themselves and their own needs. They stood alone and unwilling to participate. Many expressed feelings of annoyance by being outside, forced to walk and unsure about what to expect in the class. My students were disengaged in their community, education, and the environment. Most had spent little time outside and lacked environmental knowledge and displayed an uncaring attitude toward their local community.

The class included a group of Youth-in-Custody (YIC) students, those who were in the custody of the State (the Division of Child and Family Services, DCFS; and the Division of Juvenile Justice, DJJS), as well as students who are “at-risk” for educational failure, meaning they have not succeeded in other school programs.
Most of my students came from challenging circumstances, with little support for formal educational opportunities, and live in urban areas below the poverty level. Students below the poverty level have fewer opportunities to access nature reserves safely (Larson et al., 2010), and children who live in neighborhoods where they do not feel safe are less likely to readily apply environmental knowledge and awareness to their community (Fisman, 2005).

Despite these setbacks, I wanted to expose my students to their local environment and help them gain an appreciation for their community. I wanted to increase their environmental awareness, built on knowledge, attitudes, and behaviors applied through actions.

The summer education program approached the environmental curriculum via an action-oriented strategy, which takes learning to a level where the class and the outside world integrate with actual practices and address environmental problems (Mongar et al., 2023). The students began to show an understanding of how knowledge can affect their environment and exhibited purpose behind their action. The steps in an action-oriented approach involves students identifying public policy problems, then selecting a problem for study, followed by researching the problem, and developing an explanation, and then finally communicating their findings to others (Fisman, 2005).

Students explored science content, studied sustainable issues, read relevant scientific literature, developed and carried out research, and analyzed data. This multi-step program enabled students to stay active and engaged in environmental science practices and processes, increased their environmental awareness, encouraged them to implement these practices in a real-world environment, and allowed them to immerse in the learning experience. The program developed a connection with environmental restoration, crossed cultural borders and demographic diversity, created a sense of ownership and attachment, and developed a sense of belonging.

Week 1: Invasive Species in Mount Timpanogos Wildlife Management Area

The first week, students monitored a local problem of invasive plants by conducting a field project on vegetation sampling at a wildlife management area. Students researched the area and the issues with the invasive species of cheatgrass. They examined the characteristics that make cheatgrass invasive and used skills to identify local native plants and introduced species in the wilderness. Students determined the problem and used a transect line and percent canopy cover to determine the area’s overall percent cover of cheatgrass. Students used the results of the survey to evaluate the cheatgrass invasion in the area. They compiled their research and presented the issue to local community members to educate and inform them about the possible environmental problems in the area.

Students working in the national forest studying the role of trees in carbon cycling.

Week 2: Carbon Cycling in Uinta-Wasatch-Cache National Forest

During week two, the program evaluated forest carbon cycling within a wilderness area, part of the Uinta-Wasatch-Cache National Forest. The students’ projects involved carbon cycling models and forest carbon sinks to build a comprehensive summary of all the structures and processes involved in trees to help reduce the impact of human activity on the climate. Students identified problems in their local forests by researching the role of forests in carbon sequestration and evaluating climate change. They then selected a problem for the class to study involving the effects of deforestation. Additional research included students discovering how trees sequester carbon and researching how much carbon trees and forests can hold over a given time. Students used their results and data collection to determine how effective trees are for carbon sequestration, compiled their research, and presented the issue to local community members to educate and inform them of the possible environmental problems in deforestation and the need for forested area protection.

Week 3: Jordan River Watershed Management

Week three focused on watershed management, during which students investigated a local river and evaluated its watershed and continued pollution. Students identified problems in their community by reading articles and examining data concerning a local river’s environmental issues, proposed solutions, as well as the progress that has been achieved. Students then made qualitative statements about the river’s current condition based on abiotic and biotic measurements. Students used the information gathered and discussed issues concerning the current quality of the river and discussed why water quality is essential. Students researched the issue by conducting river water quality experiments using flow rate measurements and collected macroinvertebrates. Based on their experimental results, students developed a portfolio with a problem explanation, alternative policies, and a public statement concerning the current Jordan River water quality. Students then presented their findings to community members to help inform and educate them about the river contamination and improvements.

Student collecting water samples.

Week 4: Provo River Delta Restoration Project

During the last week, students examined a river delta restoration project for its effectiveness in restoring a wetland and recovering an endangered fish species. Students investigated the role and importance of river systems and wetland areas, monitored the status of the wetlands, and evaluated the current project’s future effectiveness. Students identified problems in their community by reading articles and examining historical data concerning the lakes environmental issues and made qualitative statements about the lake’s current condition. Students used the information gathered and discussed matters concerning the delta project to protect the local endangered species of June Sucker (Chasmistes liorus). In addition, students toured the construction site and participated in a stewardship activity planting new trees and helping to disperse cottonwood seeds around the area. Based on their stewardship project, a site tour, and experimental results, students developed a portfolio with a problem explanation, alternative policies, and a public statement concerning the current delta restoration project. Students presented their findings to others with the intent to inform and educate them about the project.

Student Impact

This program placed students as critical participants in sustainability and gave them ownership of their education, and knowledge of local environmental issues to give students a deeper appreciation and increased environmental awareness. This curriculum could be adapted for various populations although it is especially essential for those with disadvantaged backgrounds and those underrepresented in science. Creating an opportunity for my students to access nature and build environmental knowledge is important for them to build awareness and an increased ownership of their community. After completing the course, students wrote a reflection on their experience and a summary of what they learned concerning environmental awareness and feelings regarding their connection to nature.

“At first, I hated being outside, but it grew on me, and I had a lot of fun learning about the different invasive species and how they negatively affect the land.”

“I really enjoyed being outside for school. I liked the shaded and natural environments. It was enjoyable and easier to understand because I was learning about everything I could feel and touch.”

“I liked seeing the things we were learning about. It was easier to focus outside.”

Student working on writing assignments during the last day of class.

“I have had a lot of issues with school my whole life. I have never felt like what I was learning was useful. I felt like I was repeating work from former years over and over again and never getting anything out of it. After this experience, I began thinking that maybe the problem wasn’t what we were learning but where we were learning it. It was enjoyable being outside and seeing how what we were learning applied to the world around us. I got to see what we were being taught in action. We did tests with the world and not in a classroom. For the first time, I was really interested in what was being taught, and I realized that the problem wasn’t me.”

The importance of connecting at-risk youth to the outdoors is evident in their reflections. Their reflections indicate an appreciation for being outdoors, a more remarkable ability to focus their attention, and an advantage of learning in the world instead of the classroom. Students’ perception of environmental issues impacts their ability to make educated decisions. The increase in students place identity resulted in a deeper connection to the environment. Their knowledge, attitudes, and actions had changed.

Conclusion

On the last day of class, walking along the river trail with my students, I listened to their conversations, questioned their learning, and gathered their insights. I recognized how the connections made in class developed over time by building relationships, collaboration, trust, and teamwork. My students developed empathy for each other and their environment. As a class, we visited four distinct settings in our local area. My students could grasp the larger perspective by recognizing the cumulative effect of those areas as a whole. They identified the invasive species of cheatgrass studied in week one had made its way downriver and recognized the importance of carbon cycling studied during week two in the cottonwood trees flanking the banks of the river in addition to the value in wetlands studies in week three shown in the progress made on the restoration project. The sequence of each week was purposely built on the following week with a cumulative effort at the river delta restoration project, put in place to help solve many of the environmental issues identified in the previous week’s lessons. This program focuses on increasing student connection and ownership of the environment and identifying how isolated environmental concerns significantly impact the whole ecosystem. Additionally, I wanted my students to notice how environmental restoration and protection alleviate some of these issues. These connections came naturally to the students after the time spent outdoors and investigating environmental issues. Exposing them to new areas and increasing their knowledge and skills affects their awareness.

The environmental science program provided environmental concepts, fostering a deeper appreciation for nature and the outdoors. It engaged all senses, made learning more interactive and memorable, and encouraged more profound connections with the natural world, building ownership of the local area. This program initiated an attachment of students to the local area. It engaged students in environmental issues through science by participating in experiential outdoor education. It kept students engaged with relevant current topics, formed a connection to the natural world, and involved them in direct, focused experiences to increase knowledge, skills, and values.

Lindsay Casper is a graduate student in Environmental Science at the University of Idaho, in Moscow Idaho and teaches Environmental Science to at-risk youth at Summit High School in Utah.

 

 

 

Brant G. Miller, Ph.D., is an Associate Professor of Science Education at the University of Idaho. His research interests include Adventure Learning, culturally responsive approaches to STEM education, science teacher education, and technology integration within educational contexts.

Finding Dragons

Finding Dragons

by Erin Banks Rusby rerinted from the Idaho Press

n the summer of 2023, a group of high school students and adults converged over their shared interest in science and dragonflies.

Known as the Finding Dragons program, the effort aimed to provide hands-on, publishable research experience to high school students and adults, while answering some key questions about the health and history of dragonfly species — offering clues into how they have weathered stress in the past, and how they might be affected by climate change.

Their findings so far have been published in the International Journal of Odontology, with the students listed as co-authors, and a second currently under review for publication.
Jisong Ryu, a junior at Timberline High School, is interested in working in the environmental science and public policy field. Participating in the dragonfly research offered an opportunity to practice some of those research skills, and in the process, build friendships and fortitude in the face of challenging times.

“I think those efforts of understanding the problem more gives me hope and less worry about how things will be,” Ryu said.

The Charisma of Dragonflies
Insects are one of the first animals kids notice, drawn in by their seemingly alien features, said Dick Jordan, a retired science teacher who taught for 40 years at Timberline High School.

Jordan is also the founder of Life Outdoors, a nonprofit whose programs focus on connection with the outdoors and learning about conservation.

In 2021, a former student of Jordan’s, Ethan Tolman, reached out about helping Jordan survey dragonfly species in the Boise River watershed. Tolman, now a Ph.D. student at the City University of New York, wanted to look at the abundance of different dragonfly species along the Boise River.
Kristin Gnojewski, Boise Parks and Recreation’s community volunteer specialist, had trained community volunteers on dragonfly identification for a community monitoring program, and a volunteer read about the Finding Dragons program in the newspaper, asking if their group could participate. Soon, both students and community science volunteers were banding together to participate in the Finding Dragons program.

Tolman, Jordan, and Gnojewski said dragonflies make a great study subject for understanding the urban environment because they are easily recognizable and charismatic. They are not difficult to find in the Treasure Valley’s green spaces, Gnojewski said. Their aerial agility and iridescent colors make them fascinating to watch, Tolman said, noting that they appear in pop culture, like the flying machines, or ornithopters, in the Dune movies.

Dragonflies are also some of the most efficient predators, Tolman said. Known for intercepting prey rather than just chasing it, studies indicate they have a 90% success rate for snagging their target, he said.
The aquatic nymphs are eaten by fish species and other animals, while also doing their own hunting, Jordan said.

“They really are wonderful bioindicators of the health of a river,” Jordan said.

Dick Jordan, left, holds a blue dasher dragonfly as student volunteers look on. Student and adult volunteers collected blue dashers near the Parkcenter Pond in Boise in August for genome sequencing. Photo courtesy of Jisong Ryu

Time Traveling with Biological Clocks
When the DNA of a species is sequenced, it can be read as a sort of code to understand the evolutionary changes the species has undergone over time.

When Tolman approached Jordan about studying DNA sequences of dragonfly species, he likened it to a kind of time travel — a way to peer into the species’ history, Jordan said.
“When he mentioned time travel, it was just like the light came on,” Jordan said. “What an exciting way to get these kids to go back in time and think about how these species — which have been around a lot longer than us — dealt with climate change.”

In 2023, they investigated two lines of inquiry: analyzing the genomes of dragonflies that had already been sequenced, and sequencing the genome of a local species, the blue dasher (Pachydiplax longipennis).

To accomplish the latter, students and volunteers from Gnojewski’s program went to the Parkcenter Pond to catch blue dashers. The day lives on as a highlight of the program so far, with the students and city volunteers coming together to do fieldwork.

For Ella Driever, now a senior at Timberline High School, it was her first time doing field work, an exciting step for the aspiring wildlife biologist. The experience ‘sealed the deal’ on her interest in wildlife biology, she said. That day, she was also the first person to catch a blue dasher, a feat given their nimble flying capabilities.

“That was the first time I actually got to have a real creature that I was studying in my hands,” Driever said. “That was just magical.”
The specimens collected from near the pond were sent to Brigham Young University for sequencing, Jordan said.

Bringing it All Together
In August 2023, the Finding Dragons group hosted a two-day, intensive biodiversity workshop that invited everyone who participated in the project to hear presentations from Tolman and Jordan, as well as scientists from around the country about conservation research efforts.

Though the initial intent was to analyze and write the scientific manuscript about the blue dasher’s genome during the second day of the workshop, the sequencing was not yet completed. Instead, the group pivoted to analyzing the genomes of three species whose genome sequences were already available to the scientific community, seeing how they had responded to past climate change as a practice round for doing the same for the blue dasher, Tolman explained.

The group looked at the genomes of two damselflies, one from Europe and one from the western U.S., and a dragonfly from Europe. The students had the chance to do some of the computational analysis, Tolman said.

Ella Driever holds up a blue dasher dragonfly that she caught near the Parkcenter Pond as Augie Gabrielli looks on. Student and adult volunteers with the Finding Dragons project collected blue dashers near the Parkcenter Pond in Boise in August for genome sequencing. Photo courtesy of Ella Driever

The analysis revealed that none of those species appear susceptible to climate change. That is still a valuable finding as it helps scientists prioritize policy for species that are the most vulnerable, said Or Bruchim, a senior at Timberline High School that helped with the computational analysis.

“We have limited resources to alleviate the impacts of climate change,” Bruchim said. “The species that we need to protect, we should definitely allocate more resources according to how much they’re impacted. So we shouldn’t waste our resources on a species that’s not going to be too impacted by the effects of climate change.”

By the end of the day, through dividing up the different sections of manuscript, the group had a draft of about 80% of the research paper. The results were published in the International of Odonatology, with the students and city volunteers listed as co-authors.

When the blue dasher genome information came back, the students were tasked with assembling that as well, Tolman said. With the help of some additional analysis from Tolman and other scientists, they were able to write a manuscript looking at broader changes in the dragonfly order Odonata.

The manuscript is currently being reviewed by the journal Gigascience, with the students listed as authors.

Future Blue Dasher Inquiries, Future Connections
Tolman and Jordan anticipate that the information contained in the blue dasher genome can be used for an additional five or more years of scientific inquiries for students, and anyone who makes use of the publicly available data.

For example, how closely related is the Boise blue dasher to blue dashers that live elsewhere, and do they have traits that make them able to survive in cities?

Jordan says he also hopes to apply the research model to study mayflies in the McCall area, connecting with the fishing community there, he said.

The leaders and participants also highlighted the wide-ranging mental health benefits that come with scientific research efforts.

Driever said that she keeps a busy schedule with activities like playing varsity volleyball and working a part-time job.

“When I get to go do these fieldwork things, and I meet these people, I allow that nature that I’m protecting to ground me and keep myself from being burnt out,” she said.
Bruchim said his involvement shows him that others care about the same issues and are taking action toward solutions.

“It’s a really enlightening experience, and you’re able to make connections with people that share the same values and are passionate about the same things you are,” he said, “so it’s a big mental weight off, and it makes you feel more in control of the situation.”

Erin Banks Rusby covers Caldwell and Canyon County. She reports on local government, agriculture, the environment, and more. She can be reached at erusby@idahopress.com

Advice for white environmentalists and nature educators

Advice for white environmentalists and nature educators

by Sprinavasa Brown

I often hear White educators ask “What should I do?” expressing an earnest desire to move beyond talking about equity and inclusion to wanting action steps toward meaningful change.
I will offer you my advice as a fellow educator. It is both a command and a powerful tool for individual and organizational change for those willing to shift their mindset to understand it, invest the time to practice it and hold fast to witness its potential.

The work of this moment is all about environmental justice centered in social justice, led by the communities most impacted by the outcomes of our collective action. It’s time to leverage your platform as a White person to make space for the voice of a person of color. It’s time to connect your resources and wealth to leaders from underrepresented communities so they can make decisions that place their community’s needs first.

If you have participated in any diversity trainings, you are likely familiar with the common process of establishing group agreements. Early on, set the foundation for how you engage colleagues, a circumspect reminder that meaningful interpersonal and intrapersonal discourse has protocols in order to be effective. I appreciate these agreements and the principles they represent because they remind us that this work is not easy. If you are doing it right, you will and should be uncomfortable, challenged and ready to work toward a transformational process that ends in visible change.

I want you to recall one such agreement: step up, step back, step aside.

That last part is where I want to focus. It’s a radical call to action: Step aside! There are leaders of color full of potential and solutions who no doubt hold crucial advice and wisdom that organizations are missing. Think about the ways you can step back and step aside to share power. Step back from a decision, step down from a position or simply step aside. If you currently work for or serve on the board of an organization whose primary stakeholders are from communities of color, then this advice is especially for you.
Stepping aside draws to attention arguably the most important and effective way White people can advance racial equity, especially when working in institutions that serve marginalized communities. To leverage your privilege for marginalized communities means removing yourself from your position and making space for Black and Brown leaders to leave the margins and be brought into the fold of power.

You may find yourself with the opportunity to retire or take another job. Before you depart, commit to making strides to position your organization to hire a person of color to fill the vacancy. Be outspoken, agitate and question the status quo. This requires advocating for equitable hiring policies, addressing bias in the interview process and diversifying the pool with applicants with transferable skills. Recruit applicants from a pipeline supported and led by culturally specific organizations with ties to the communities you want to attract, and perhaps invite those community members to serve on interview panels with direct access to hiring managers.

As an organizational leader responsible for decisions related to hiring, partnerships and board recruitment, I have made uncomfortable, hard choices in the name of racial equity, but these choices yield fruitful outcomes for leaders willing to stay the course. I’ve found myself at crossroads where the best course forward wasn’t always clear. This I have come to accept is part of my equity journey. Be encouraged: Effective change can be made through staying engaged in your personal equity journey. Across our region we have much work ahead at the institutional level, and even more courage is required for hard work at the interpersonal level.

In stepping aside you create an opportunity for a member of a marginalized community who may be your colleague, fellow board member or staff member to access power that you have held.

White people alone will not provide all of the solutions to fix institutional systems of oppression and to shift organizational culture from exclusion to inclusion. These solutions must come from those whose voices have not been heard. Your participation is integral to evolving systems and organizations and carrying out change, but your leadership as a White person in the change process is not.

The best investment we can make for marginalized communities is to actively create and hold space for leaders of color at every level from executives to interns. Invest time and energy into continuous self-reflection and selfevaluation. This is not the path for everyone, but I hope you can see that there are a variety of actions that can shift the paradigm of the environmental movement. If you find yourself unsure of what action steps best align with where you or your organization are at on your equity journey, then reach out to organizations led by people of color, consultants, and leaders and hire them for their leadership and expertise. By placing yourself in the passenger seat, with a person of color as the driver, you can identify areas to leverage your privilege to benefit marginalized communities.

Finally, share an act of gratitude. Be cognizant of opportunities to step back and step aside and actively pursue ways to listen, understand and practice empathy with your colleagues, community members, neighbors and friends.

Camp ELSO is an example of the outcomes of this advice. Our achievements are most notable because it is within the context of an organization led 100 percent by people of color from our Board of Directors to our seasonal staff. This in the context of a city and state with a history of racial oppression and in a field that is historically exclusively White.
We began as a community-supported project and are growing into a thriving community-based organization successfully providing a vital service for Black and Brown youths across the Portland metro area. The support we have received has crossed cultures, bridged the racial divide and united partners around our vision. It is built from the financial investments of allies – public agencies, foundations, corporations and individuals. I see this as an act of solidarity with our work and our mission, and more importantly, an act of solidarity and support for our unwavering commitment to racial equity.

Sprinavasa Brown is the co-founder and executive director of Camp ELSO. She also serves on Metro’s Public Engagement Review Committee and the Parks and Nature Equity Advisory Committee.

Teaching Science Inquiry

Teaching Science Inquiry

Can I become a science inquiry facilitator? . . . If I’ve never been one?

by Jim Martin

What do I need to be competent in, comfortable with, being a facilitator instead of a top-down teacher? I think a first thing is the recognition that people can learn on their own; that they don’t need to hear me say every single thing that I want them to know. To be free to allow that, facilitators have to be comfortable with their understandings of the content they are delivering. And, they need to be comfortable developing effective work groups. Actually, I can think of a bazillion things, but these three are, so I currently believe, essential to making the transition.

If the Common Core State Standards (CCSS) and New Generation Science Standards (NGSS) are going to become more than simply another swing of the pendulum that arcs through the schools with predictive regularity, then teachers need to rally to support and develop those pieces of these initiatives which are directly targeted at the deficiencies in our teaching. Deficiencies which have landed us in a mediocre position in the educational statistics describing achievement on the globe. We’re the only ones who can do it.

Both the CCSS and NGSS initiatives profess to be based on a constructivist, active learning model of teaching and learning. This, to me, is wonderful news. Our brain is admirably organized to learn by actively constructing conceptual schemata, conceptual learnings. It does this best by asking questions of the real world. This means that teachers aren’t , of necessity, people who put learning into other people’s brains; rather, they are people who can organize their teaching environments to draw out the learning potential which resides in their students’ brains. They facilitate those brains to enter a conceptual space, engage and discuss what is there, and find out as much as they can about it. Like the little robotic vacuum cleaners, when, once their switch is turned on, clean up all the dust and litter in the room. All by themselves, with no one directing them. Once you turn on a brain, it doesn’t turn off. Unless it loses its freedom to work.

I’ve observed this dichotomy of teaching practices as long as I have taught, and been a student. Didactic, teacher-centered practices, and constructivist, student-centered practices: Is it a matter of personality, or of comfort with the content and methods being used to teach it? That makes a teacher prefer one or another? I’ve had (and observed) teachers who told me what to learn and how to learn it, then tested me on the results. Twice, in high school, I had teachers who threw out an idea, then sat back as I tried to find out more about it. I remember what I learned by finding out 60 years later. And the excitement of the learning. I carry no specific memories of learnings from the rest, except for things which personally interested me, like diagramming sentences. Which, odd it may seem, I loved to do.

The didactic teacher I had from fifth through eighth grades was the kind who told me what to learn and how to learn it all the way to the last days of eighth grade. Then, she started us on the way to pre-algebra by saying, “You don’t have to learn this. Just see if you can follow the argument.” Then, she wrote on the board the first algebraic expression I’d ever seen, a + 2 = 6. I looked at that for awhile and thought, “Wow! You can use letters to stand for anything! You could learn about anything with that!” A mind, at last free to explore.

For that brief moment, my stern, demanding teacher had become a facilitator. All by herself. That was 1952. Had her stern and demanding exterior reflected a lack of comfort with the content she was teaching and the methods used to deliver it; or, was her exterior reflecting the personality within? I can’t answer that question, but the obvious interest and enthusiasm she brought to the introduction to equations suggest she may not have actually been a stern and demanding person. It seems almost, from hindsight, relief to be free to teach as she thought she ought that I observed those very few days at the end of eighth grade. Today, more teachers have experienced being facilitators, but many have not. What would you need to become one? How can you find out?

At this point, I should leave you to find out; but, I’ll barge ahead with my own ideas, just as any didactic teacher would. Hoping all along that you’ll adopt a constructivist approach to the subject. That said, let’s start with my offering of three things a person who is a facilitator must have encountered and successfully engaged.

The first is probably the most difficult for a teacher to entertain – recognizing that people can learn on their own. When I first experienced this, I was in my first year teaching below college, in a 7th grade self-contained classroom. I didn’t know it at the time, but I had begun employing a constructivist teaching paradigm. It was hard, exciting work, yet I always felt the anxiety-producing peer pressure from colleagues whose view of school was students sitting in rows doing quiet seat work. Luckily, I had a very supportive principal, who encouraged what I was doing. And I applied what I had so far learned from raising my own children, that they do best when they are following up on choices they have made, which I had offered them, and which were within the limits I knew were workable.

So, what did I learn about using constructivist vehicles for delivering 7th grade curricula? About whether and how students can learn on their own? One, that this worked. At least, for me. They had two and a half hours each morning for language arts. During that tiem, they scheduled and worked on open-ended (but contained) writing and reading assignments. We also used speech and drama to engage active learning. (I didn’t know that’s what it is called; I simply knew it worked.) For instance, while working in groups to write and deliver one-act plays to elementary classes, they also learned the current language arts curriculum I had to deliver. Students became involved and invested in their work, and I noticed they also seemed empowered as persons. These were outcomes of the work; I wanted to know how this involvement and investment in their educations came to be. And that started my lengthy, often-interrupted journey into the human brain. A long stretch for me, with my background in intertidal marine invertebrate communities!

How would a constructivist science-inquiry delivery look in an actual classroom in two very different activities? The first is a microscope activity, where students observe for the stages of mitosis in plant cells. The second is a field activity, where students observe the effects of streamside vegetation on the temperature and dissolved oxygen content of the water adjacent to it.

When you employ a constructivist paradigm to organize the delivery of your curriculum, the students’ job is to construct the concepts you hope they’ll acquire by examining the pieces of the concept they are acquiring. Instead of you telling them the concept, they learn its essential parts by engaging them, and then use these parts to tell themselves the concept. A different way to teach; but effective. The first few attempts call for courage and confidence on the part of the teacher. And, in time, the patience to take the time to allow the learning to happen.

How does this play out? In the mitosis activity, you might start by projecting a slide of plant tissue containing cells whose chromosomes have been stained; the usual root cells most of us have observed. You have students pair up to do two things: Locate as many chromosomal configurations as they can and draw them. Or, if you know your students well, ask them to find out if there is any underlying order in the mish-mash of chromosomal configurations they see. This done, they are to organize their drawings in the order they think they occur during the progress of cell division. If you’re truly brave, you might ask them to find and draw other cellular evidence to support your placements. That done, they can present their findings, then go to the books and internet to find what other scientists have found about cell division. They will learn as much, or more, than you would have taught them. And moved further on the road to becoming life-long learners; explorers of the world they live in.

In the streamside activity, you ask each group to take a reach along the stream, then find out the effect of the vegetation on temperature and dissolved oxygen in the water along that reach. Nearly all students can do this. You can provide gentle hints about overhanging vegetation if necessary. The hard part of this work for you is locating a stream which has enough overhanging vegetation for the number of groups in your class. When they’ve collected the data, they find out what they can about temperature and dissolved oxygen, and relate that to what they observed. Next, they prepare presentations about their work, what their data tell them, and what next steps would be if they have discussed them in their groups. (Note that these are things the students and teacher do. To know what they think, we need to go into the brain.)

Eventually, with a constructivist approach to conceptual learnings, coupled with a didactic approach to things like safely lighting a bunsen burner or using a dissolved oxygen probe, I became convinced that this consistently led to solid learning. So, I slowly began to learn about the brain we carry with us, and the ways that it learns. What I found reinforced what I observed; validated it as a teaching paradigm based on real evidence. I had observed evidence over the years that students seeking answers to their own questions involved and invested them in their work; but that was just me, making observations and inferences. As I learned more about how the brain processes input from the world outside the body, I discovered that what I observed was real. Students get better and better at this. Probably quicker than you do. This relates to students as autonomous learners. Autonomous because they are pointing their needs to know, and following up on them.

The other two things a facilitator must engage, comfort with understandings of content, and comfort with developing effective work groups, are our responsibilities. Here is how I approached them. First, I recognized that they are, indeed, our responsibilities. Just as it was my responsibility to take college and graduate courses to fill the gaps in my understandings when I taught in college. Goes with the job. We’re teaching professionals, and that places the onus on us to do what is necessary to become comfortable with the content we teach. The only way to do that is to learn the content. We can take courses in it, work out an internship with someone who does the work, or teach ourselves. It’s an unfortunate fact of American education that we’ll be asked more than once in our careers to teach content we’re either marginally prepared to teach, or know next to nothing about. It will take all of us, working together, to resolve that.

When I finally decided to teach in K-12 schools, I knew nothing about teaching reading. I’d taken literature courses in college, but could only recall that we read, then discussed, then wrote papers. Not much help. I’d noticed in the few teacher education courses I’d taken that the most informative were the special education courses, so I enrolled in a course in corrective reading. It was taught by Colin Dunkeld, and delivered within a constructivist paradigm. (This was in the early 1970s!) I became comfortable enough to make my own decisions about teaching language arts. The corrective reading course was very hard and time-consuming work, but had a great payoff – confidence in content and comfort in delivery. That, and my life-long love of words helped me build a useful / effective / profitable / worthwhile7th grade language arts curriculum.

When you decided to do the mitosis and streamside vegetation activities, you marshallled together your understandings about those topics. You’d observed slides of dividing onion root-tip cells in a genetics course you took in college, and felt familiar enough with the process and observations that you would probably only have to review and practice to come up to speed in the mitosis activity. You’d also taken two botany courses because you’ve always loved plants, so felt you could understand the vegetation part of the overhanging vegetation activity. Temperature and dissolved oxygen in streams is new to you, so you decide to ask around about finding help. You contact the school district science specialist who recommends a field trip program which focuses on the riparian (streams and their banks) which includes water temperature and dissolved oxygen in its offerings. As a real bonus, the program includes measuring the effect of streamside vegetation on temperature and dissolved oxygen near the stream bank, and a field trip for you and your students. Offerings like the one described are fairly common! You do have to ask.

If your circumstances are different for your preparation to teach these two activities, how would you approach them? Leave your thoughts as a comment for others who will, you can be sure, be interested. Or, leave a question for me to answer!

Aside from knowing and teaching the learner inside each student who enters your door, your becoming comfortable with content and its delivery is something you cannot bypass. Its effect on your students is profound. Think of yourself as being assigned to perform as a heart surgeon, even though you’d never done it. Would you be satisfied knowing that, while you did have experience in knee surgery, you had none in heart surgery? Like surgeons, we directly affect the quality of our students’ lives, and must be certain we are delivering the best education possible. We can’t do that if we’re uncertain about our content understandings and delivery methodologies. Knowing is our responsibility.

If you know the learner who lives within your students, and are comfortable with the content you teach, then you’re ready to become comfortable developing and using what I call Effective Work Groups. These are small groups of students who know how to work together to accomplish tasks, and who can coalesce into larger groups to carry out projects. Humans are social beings, and can learn to work together effectively. Let’s look at the two examples of constructivist approaches to learning as they would appear from within an effective work group, or team. First, make the groups, then have each group discuss the work and decide how to organize it. After each session, they will discuss how it went, decide on any modifications, and then continue. When the work is completed, and it’s time to move on to more curriculum, they in their groups, then as a class, nail down what they know about effective work groups. (Be sure to call them that, and that they know this is a goal. Toward the end of the year, have them develop a description of effective work groups.)

Now, here is what one group has decided to do. Mitosis: Identify chromosomes; find different examples of chromosomes; each person will use a microscope because they all need to develop this skill; sort chromosomes out; declare the steps in mitosis; research what other scientists have found out about chromosomes; develop and critique their report; report to the class; assess their work. Communication is important here; one of the keys to becoming effective. You have them assess the role of communication in the effectiveness of their work after they have found and identified chromosomes, sorted them into a process, and have prepared their report to the class. They decide they’ll each observe their own slide, and will show others what they find and what they think it means. They assign tasks when they present. Streamside vegetation: They divide into temperature and dissolved oxygen teams; each team learns how to do the observation, then teaches the other group; then they divide the reach. After they arrive on site, they decide to assign a group of Mappers to map the vegetation. The group works on communication when they discuss data’s meaning, and divide jobs when they look up other scientists’ work on web and in books. You ask them to assess their roles in their group, and the outcome of their working together.

Active learning within a constructivist paradigm is effective, even at the college level. Many teachers engage it, but far from enough. It takes confidence in your students’ capacity for autonomous learning, and confidence in your capacity to do and facilitate this kind of work. And patience; lots of it. If you don’t believe students of almost any age can engage this paradigm, find a class of young students which uses it and observe them at work. When they are born, children possess wonderful potential. The environments they develop in determine, to a large extent, whether they will generate the capacity to achieve their potential. If their environment believes they cannot, more than likely they won’t. If their environment recognizes the learner within, they more than likely will. And feel this is normal.

jimphoto3This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests,and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”

Teaching Science Inquiry

How Big is Science? Can I Discover its Dimensions?

JimMartinOil

How Big is Science? Can I Discover its Dimensions?

There is great beauty in thoughts well conceived and clearly expressed.
This is science, when it is skillfully done.

by Jim Martin
CLEARING Associate Editor
(Photo by Jim Martin also!)

When I first taught high school science, I assumed that published curricula would provide reliable instruction for my students. Midway through my first year, it began to dawn on me that this might not be so. The curricula the school used was organized so students studying it would learn about science. This, besides being rather boring, would not do what I expected. I believe students come into my classroom to DO science, to become scientists. A much different process than learning about.

By this time in my career, I had learned that students’ brains could think; all by themselves. Sort of an ‘Oh, duh’ thought, but new to me. What first put me onto this was observing students move from serial to parallel processing as they developed conceptual understandings. That, and reflecting on student frustrations and failures in lab when I assumed that their lab manuals had been written by authorities who “knew.” Thinking about these frustrations and failures revealed to me that students, and many of their teachers, hadn’t acquired the knowledge to comprehend the content as it was laid out in our texts and manuals.

My flag, the whirring that my antennae have learned to make when I’m not being careful about where I’m headed, was the perception expressed by students that, “this is harsh.” I can’t think of a better way to describe it; texts and manuals that were filled with directions and expectations insensitive to where students were at this stage of their educations. And me, expecting them to learn from them as written. The labs, in particular, were replete with concept load, where more than one concept lies embedded in words meant to clarify. What we do to enable our students to learn should never evoke the comments I heard. If we care for our students, and expect them to discover the beauty of our discipline, we should teach effectively. So, I ask, Is empowering students in science something that we can learn to do for practically every student who enters our door?

Science is a product of human endeavor, and can be learned. Look at the good teachers whose students learn to express themselves in competent poetry and art. We can do it in science if we become competent and humane practicioners. This tells me that all of the pedagogical classifications our profession employs – Maslow’s pyramid, hierarchy of cognitive function, inductive/deductive, etc. – reflect expressions of central nervous system function, expressions emergent from our brain at work, and that these underlying neurological processes aren’t as complex as the concepts and classifications we use to describe, understand, and manipulate them.

It takes confidence for a teacher to move from the recitation of facts to the manipulation of concepts in the solution of problems. In fact, examination of this transition provides some useful successive approximations which can be used as signposts to move ourselves from one end to the other on the spectrum. Science engages concepts and processes along with the brain’s mechanisms for generating critical thinking and learning for understanding. While complex to address individually, they all come into play when you do science. Just as similarly complex combinations of concept and process come into play together in painting an image, writing a poem, swishing a three-pointer, or playing a long, slow, syncopated sax line.

How do you prepare your students to engage in self-directed inquiries in the environment, while also preparing them to take standardized tests on the content they are expected to cover? A good first step is to prepare yourself. We can start by looking at what teaching inquiry looks like along a developmental continuum from fully teacher-centered to fully student-centered; a line with particular dimensions. The names of the stages along the continuum describe its dimensions, and the time to learn to express each dimension is the length of a particular piece of the continuum. Let’s picture different ways you might execute a streambank restoration project, and develop our continuum along that process.

There is a creek about four blocks from your school, and you have learned that the city wants to restore a section of its bank for a wildlife observation park. When you inquire, you find that part of the project involves planting native riparian trees. How might you exploit this as an opportunity? Let’s say you begin this work at what I’ll call the Fully Teacher-Centered level, in which you instruct the class on the project, show them how to plant the cottonwood cuttings you will be using, and have them set up pots and plant their cuttings in them. You will show them how to measure the cuttings’ growth, and graph their data. Typical teacher tells, students do, classroom learning. During all of this work, you have been attempting work in which you have little or no experience, especially in involving students in work outside the classroom.

You can begin to move toward the next phase, the Introducing Student-Centered level, by finding ways to make the activity, while it is not student generated, become relevant to them and enables your students to feel that this new learning is important to them. You can do this by engaging them in selecting learnings they would like to attempt. Let’s say one student, when planting her cutting, asks which end goes into the ground. A tough question if you’re not a botanist, which I am not. So, you suck it in and respond, “I don’t know. How can we find out?” (The most beautiful words a teacher can utter!) What happens next is up to your students. They’ll answer their question, and you’ll have grown at least another inch and a half in stature.

In this stage, you and your students will become aware of your need to learn more about the community outside the classroom. You might have already involved them in work outside your classroom organized by a local environmental education organization. You make sure your students have practiced the work they will do before going out in the field. And you might find yourself looking for other teachers who take their classes out into the field, and helped them become active members of effective work groups. In this stage, you still rely on other knowledgeable people, especially environmental educators, to facilitate your work.

Another thing to look for, and in future expect, is students who begin to see their role in making field work eminently doable. Students who are involved and invested in the work, and empowered as persons. They will become partners with you in planning and doing the work; and, in doing the learning and research to comprehend what they have discovered.

If you continue this work, you will find yourself at the next level, the Teacher:Student-Centered Level, where you and your students collaborate on the project from its initial conception to the final product. You initiate projects, and then include your students in designing and doing the project. You are experienced now in involving students in work outside the classroom and exploiting the curricula embedded there. Student work groups know what to do and how, and practice tasks before going into the field. You know how to design, organize, and implement the work, and to integrate the field work with curriculum. The results of their field work are brought back to the classroom by the class for discussion and follow-up work.

As you continue in this work, you will find yourself working at the Fully Student-Centered Level. You have a set of partners in the community whom you work with to design, develop, and execute projects in the community, and to tie them to your classroom curricula. You work closely with your students to plan field work and classroom followup. Students are organized into effective work groups who, working together, have developed the skills to carry out their field work, are involved and invested in their work, reach out to help others in their groups, communicate effectively, and can be counted on to make sure their equipment and materials are ready to go. You facilitate this by maintaining effective contact with your partners and agencies. You have eyes out for opportunities to expand your network, while ensuring you don’t overextend yourself.

It is surprising how little it takes to move a teacher from the textual delivery of facts and information to the contextual delivery of understanding. Experience in initiating, doing, and communciating self-directed inquiry is a key piece of the puzzle. In spite of this effort, and most school science is taught from texts, standardized labs, and worksheets. In time, teachers will be the decision-makers in their schools, and schools will become dynamic centers of learning. In the meanwhile, we have to do the best we can to teach well and let others know what we’re doing.

Science has many dimensions. We’ve begun to enter a discussion of the amount of structure we impose upon our students’ efforts, and the amount of structure we build into our approach to meeting students’ needs. As with any kind of learning, we expect the learners to move from dependence on instruction to independent activity. Do we, in our classrooms, allow that? Do we allow this for ourselves?

jimphoto3This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests,and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”

Next Generation Science Standards:

Next Generation Science Standards:

Should they direct students’ educations, or would they be better applied to teachers’ educations?

by Jim Martin
CLEARING Associate Editor

P (earth)icture this: Science teachers with a strong background in doing science, working in a collegial environment, building their own independent curricula. Will they do a better job than those who, working alone in their classrooms, implement top-down national standards? I like the collegial model. Where it describes how teachers in a school actually work, students do best. To accomplish a collegial model means science teachers must organize themselves to do a better job of overseeing their pre- and in-service educations and the way they deliver their curricula; they need to be in charge. Publishing sets of science standards isn’t how to improve science education. The people who teach science need to be comfortable with it, to know and use science, and pass this capacity on to their students. That, by itself, will do the job.

We’ve been following teachers and their efforts to look outside the classroom for their curricula. This isn’t a smooth process for most teachers. For many of us, our pre-service educations didn’t prepare us for it, the work itself entails a set of skills and knowledge we haven’t practiced, and it produces an emergent set of outcomes which generalize to all disciplinary areas. The world outside is the subject of K-12 education, but it isn’t taught as if it were. Before there were schools, we learned about the world by living it. That’s how our brains are organized to learn for understanding and empowerment. Learning by memorizing puts facts in our brains, but doesn’t empower the brain to use them to navigate the real world. If it did, we’d do a better job at the helm. In spite of perennial rhetoric about the outcome of science education in the US, it still resolves, for the most part, to specific knowledge of scientific facts. Science offers much more than this.

JimMartinPhoto

Photo copyright 2014 Jim Martin

One thing I noticed during my years in the classroom is that scientists who decide to become science teachers become very good science teachers. They aren’t limited by the words and illustrations in the teachers’ edition. They know, understand, and do science, and use that as their foundation to teach from. How would science and environmental education look if science teachers had also done science? What would we have to do to explore this model, decide how to use it, and begin to implement it? There have been initiatives like this that were very successful, but which died at the end of their funding. They made a big dent in the way a number of teachers teach, but made no impression on entities like state departments of education, or most school district superintendents. Because, by using the real world to generate curricula, teaching science by doing science doesn’t rely on standard publishers’ offerings, it doesn’t appear to be education. To the inexperienced.

Politicians, citizens, and educators have been addressing the use of standards and benchmarks, and standards-based tests in K-12 schools for at least two decades. While they are still on the hunt for the magical set of standards and benchmarks which will guarantee improvement in science education, to date a fruitless search, some of the words they utter may have practical use. Once in a while, words like analysis and synthesis, problem solving, reading for understanding, are spoken. Do we teach to these words? Or do we teach to memorize these words and their meanings.

While the words aren’t the customary ones we read in science text books (critical thinking, analysis and synthesis, etc.), they speak more clearly to science than acquiring a set of memorized words and facts. A checklist of standards addressed but not learned for understanding. Used in an authentic way, these words have the capacity to speak to involvement and investment in science, to empowerment as persons, to minds immersed in the real world that K-12 education is supposed to prepare us for. It’s up to us to see that this is what emerges in our classrooms and on our sites.

Here is a list of processes engaged on college campuses, and which are proposed by some for middle and high school students: critical thinking, analysis and problem solving, scientific and quantitative reasoning, writing, critical reading and evaluation, writing effectiveness and mechanics, and the ability to critique and construct arguments. Might they be goals for us to shoot for, an effective set of standards? How would you use them to teach science or environmental education topics?

While we continue to try to improve science (and all) education, we produce only words; standards and benchmarks. Just the title, Next Generation Science Standards (NGSS), one recent initiative to improve science education, is a clear indicator that we continue to parse words to fit what we are already doing, and call that change. It’s true that some standards proponents acknowledge that we have to do a better job of preparing teachers, but offer little to provide funding and education resources to do the job.

The intentions of the NGSS to stimulate new curricula, train pre- and in-service teachers, foster students who do science as science is done, and students who master science concepts, could be a sign of hope if you take them at face value. But if you look at the flip side, this could simply be more of the same with a newly calibrated vocabulary. A vocabulary which can be didactically taught and memorized, changing little that we actually do. And which may not be funded to supplement the necessary pre- and in-service training to implement the meat of the proposed changes. According to the National Science Teachers Association, 3.2 million teachers will be affected by the NGSS. Can we expect their real needs to be paid for?

There is a sense among people that, if you “just use the words, you’re doing the thing.” I’ve sat in in-service presentations that do this. In one, at the end of my K-12 teaching career, we were being asked to use words like “why” and “how” in multiple-choice question stems in order to induce critical thinking. How much critical thinking can you induce in a multiple-choice question stem? We need to do better than this. You have to experience the cognitive processes the words refer to. That’s how our brain learns for understanding. College teachers purport to do this. What if we explored what they do? I know that even very young children learn very well when they are allowed to use their own brains to do the learning. What would happen if you used your own brain to organize and deliver your curriculum?

Do we ask all colleges and universities to teach to the same science standards? Or, do we allow them the latitude to teach what they think ought to be taught? What emerges from this? Why? Why they and not us? What would emerge? How would K-16 collaborations work out? Would they improve education? Impoverish it? Make no difference? For instance, college courses often involve students in critical thinking, analysis and problem solving, scientific and quantitative reasoning, writing, critical reading and evaluation, writing effectiveness and mechanics, and the ability to critique and construct arguments. In other words, they know that brains can learn for understanding, and those thought processes use the parts of the brain that are engaged during learning for understanding. Or, at least, one would hope that they did. The standards remind us of conceptual areas we need to address, but we must do a good job of giving our students quality time to engage them, to reflect on what they experience, and learn for understanding and empowerment. There is no teachers’ manual on this, but the process can be learned and used. It’s up to us to learn how to do it.

jimphoto3This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests,and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”