by editor | Mar 20, 2019 | Indigenous Peoples & Traditional Ecological Knowledge
Educating as if Survival Matters
Nancy M Trautmann Michael P Gilmore
BioScience, Volume 68, Issue 5, 1 May 2018, Pages 324–326, https://doi.org/10.1093/biosci/biy026
Published:
22 March 2018
ver the past 40 years, environmental educators throughout the world have been aiming to motivate and empower students to work toward a sustainable future, but we are far from having achieved this goal. Urgency is evident in the warning issued by more than 15,000 scientists from 184 countries: “to prevent widespread misery and catastrophic biodiversity loss, humanity must practice a more environmentally sustainable alternative to business as usual… Soon it will be too late to shift course away from our failing trajectory, and time is running out. We must recognize, in our day-to-day lives and in our governing institutions, that Earth with all its life is our only home” (Ripple et al. 2017).
In this tumultuous era of ecocatastrophes, we need every child to grow up caring deeply about how to live sustainably on our planet. We need some to become leaders and all to become environmentally minded citizens and informed voters. Going beyond buying greener products and aiming for energy efficiency, we must find ways to balance human well-being, economic prosperity, and environmental quality. These three overlapping goals form the “triple bottom line,” aiming to protect the natural environment while ensuring economic vitality and the health of human communities. This is the basis for sustainable development, defined by the United Nations as “development that meets the needs of the present without compromising the ability of future generations to meet their own needs” (WCED 1987). Strong economies of course are vital, but they cannot endure at the expense of vibrant human societies and a healthy environment.
Within the formal K–12 setting, a primary hurdle in teaching for sustainability is the need to meaningfully address environmental issues within the constraints of established courses and curricular mandates. In the United States, for example, the Next Generation Science Standards designate science learning outcomes for grades K–12 (NGSS 2013). These standards misrepresent sustainability challenges by portraying them as affecting all humans equally, overlooking the substantial environmental justice issues evident within the United States and throughout the world. Another oversight is that these standards portray environmental issues as solvable through the application of science and technology, neglecting the potential roles of other sources of knowledge (Feinstein and Kirchgasler 2015).
One might argue that K–12 students are too young to tackle looming environmental issues. However, they are proving up to the challenge, such as through project-based learning in which they explore issues and pose potential solutions. This may involve designing and conducting scientific investigations, with the possibility of participating in citizen science. Case-study research into teen involvement in community-based citizen science both in and out of school settings revealed that the participants developed various degrees of environmental science agency. Reaching beyond understanding of environmental science and inquiry practices, this term’s definition also includes confidence in one’s ability to take positive stewardship actions (Ballard et al. 2017). The study concluded that the development of environmental science agency depended on involving teens in projects that included these three factors: investigating complex social–ecological systems with human dimensions, ensuring rigorous data collection, and disseminating scientific findings to authentic external audiences. Educators interested in undertaking such endeavors can make use of free resources, including an ever-growing compendium of lesson plans for use with citizen-science projects (SciStarter 2018) and a downloadable curriculum that leads students through the processes of designing and conducting their own investigations, especially those inspired by outdoor observations and participation in citizen science (Fee 2015).
We need to provide opportunities for students to investigate environmental issues, collect and analyze data, and understand the role of science in making informed decisions. But sustainability challenges will not be resolved through scientific approaches alone. Students also need opportunities to connect deeply with people from drastically different cultures and think deeply about their own lifestyles, goals, and assumptions. As faculty members of the Educator Academy in the Amazon Rainforest, we have had the privilege of accompanying groups of US teachers through 10-day expeditions in the Peruvian Amazon. Last summer, we asked Sebastián Ríos Ochoa, leader of a small indigenous group living deep in the rainforest, for his view of sustainability. Sebastián responded that he and his community are one with the forest—it is their mother, providing life and wholeness. Reflecting on the changes occurring at an accelerating rate even in remote rainforest communities, Sebastián went on to state that his greatest wish is for his descendants to forever have the opportunity to continue living at one with their natural surroundings (Sebastián Ríos Ochoa, Maijuna Community Leader, Sucusari, Peru, personal communication, 18 July 2017). After decades of struggle during which their rainforest resources were devastated by outside loggers and hunters (Gilmore 2010), this indigenous group has regained control over their ancestral lands and the power to enact community-based conservation practices. Their efforts provide compelling examples of how people (no matter how few in number and how marginalized) can effect positive change.
In collaboration with leaders of Sebastián’s remote Peruvian community and a nongovernmental organization with a long history of working in the area, US educators are creating educational resources designed to instill this same sense of responsibility in children growing up without such direct connections to nature. Rather than developing a sense of entitlement to ecologically unsustainable ways of life, we need children to build close relationships with the natural world, empathy for people with different ways of life, and a sense of responsibility to build a better tomorrow. Although the Amazon rainforest is a common topic in K–12 and undergraduate curricula, typically it is addressed through textbook readings. Instead, we are working to engage students in grappling with complex real-world issues related to resource use, human rights, and conservation needs. This is accomplished through exploration of questions such as the following: (a) How do indigenous cultures view, interact with, and perceive their role in the natural world, and what can we learn from them? (b) How do our lives influence the sustainability of the rainforest and the livelihoods of the people who live there? (c) Why is the Amazon important to us, no matter where we live? (d) How does this relate to the triple-bottom-line goal of balancing social well-being, economic prosperity, and environmental protection?
Investigating the Amazon’s impacts on global weather patterns, water cycling, carbon sequestration, and biodiversity leads students to see that the triple bottom line transcends cultures and speaks to our global need for a sustainable future for humans and the environment throughout the world. Tracing the origin of popular products such as cocoa and palm oil, they investigate ways to participate in conservation initiatives aiming for ecological sustainability both at home and in the Amazon.
Another way to address global issues is to have students calculate the ecological footprint attributable to their lifestyles, leading into consideration of humankind vastly overshooting Earth’s ability to regenerate the resources and services on which our lives depend. In 2017, August 2 was determined to be the date on which humanity had overshot Earth’s regenerative capacity for the year because of unsustainable levels of fishing, deforestation, and carbon dioxide emissions (Earth Overshoot Day 2017). The fact that this occurs earlier each year is a stark reminder of our ever-diminishing ability to sustain current lifestyles. And as is continually illustrated in news of climate disasters, human societies with small ecological footprints can be tragically vulnerable to such calamities (e.g., Kristof 2018).
Engaged in such activities, students in affluent settings may end up deriving solutions that shake the very tenet of the neoliberal capitalistic societies in which they live. To what extent should students be encouraged to challenge the injustices and entitlements on which world economies currently are based, such as by seeking ways to transform the incentive structures under which business and government decisions currently are made? Should they be asked to envision ways of overturning the unsustainable ways in which modern societies deplete resources, emit carbon dioxide, and destroy the habitats needed to support diverse forms of life on Earth?
Anyone who gives serious consideration to the environmental degradation and social-injustice issues in today’s world faces the risk of sinking into depression at the thought of a hopeless future. What can we possibly accomplish that will not simply be too little, too late? Reflecting on this inherent tension, Jon Foley (2016) stated, “If you’re awake and alive in the twenty-first century, with even an ounce of empathy, your heart and mind are going to be torn asunder. I’m sorry about that, but it’s unavoidable — unless you simply shut down and turn your back on the world. For me, the only solution is found in the space between awe and anguish, and between joy and despair. There, in the tension between two worlds, lies the place we just might find ourselves and our life’s work.”
Education for sustainability must build on this creative tension, capturing students’ attention while inspiring them to become forces for positive change.
Acknowledgments
Collaboration with the Maijuna is made possible through work of the OnePlanet nonprofit organization (https://www.oneplanet-ngo.org) and Amazon Rainforest Workshops (http://amazonworkshops.com).
Funding statement
Nancy Trautmann was supported through a fellowship with the Rachel Carson Center for Environment and Society in Munich, Germany, to develop curricular resources that highlight the Maijuna to inspire U.S. youth to care about conservation issues at home and abroad.
References cited
Ballard HL, Dixon CGH, Harris EM. 2017.
Youth-focused citizen science: Examining the role of environmental science learning and agency for conservation. Biological Conservation 208: 65–75.
Earth Overshoot Day. 2017. Earth Overshoot Day 2017 fell on August 2. Earth Overshoot Day. (1 December 2017; www.overshootday.org)
FeeJM. 2015. BirdSleuth: Investigating Evidence. Cornell Lab of Ornithology . (15 January 2018; http://www.birdsleuth.org/investigation/)
FeinsteinNW, KirchgaslerKL. 2015.
Sustainability in science education? How the Next Generation Science Standards approach sustainability, and why it matters. Science Education 99: 121–144.
Foley J.2016. The space between two worlds. Macroscope . (28 October 2016; https://themacroscope.org/the-space-between-two-worlds-bc75ecc8af57)
Gilmore MP. 2010. The Maijuna: Past, present, and future . 226–233 in Gilmore MP, Vriesendorp C,Alverson WS, del CampoÁ, von MayR, WongCL, OchoaSR, eds. Perú: Maijuna. The Field Museum.
KristofN.2018. Swallowed by the sea. New York Times. (23 January 2018 ; www.nytimes.com/2018/01/19/opinion/sunday/climate-change-bangladesh.html)
[NGSS] Next Generation Science Standards. 2013. Next Generation Science Standards: For States, By States. NGSS. (10 October 2017; www.nextgenscience.org)
Ripple WJ et al. 2017. World scientists’ warning to humanity: A second notice. BioScience
67: 1026–1028.
SciStarter. 2018. SciStarter for Educators. SciStarter . (12 February 2018; https://scistarter.com/educators)
[WCED] World Commission on Environment and Development. 1987. Our Common Future . Oxford University Press.
© The Author(s) 2018. Published by Oxford University Press on behalf of the American Institute of Biological Sciences.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
by editor | Jan 24, 2019 | Indigenous Peoples & Traditional Ecological Knowledge, Place-based Education
Canoes and other forms of human powered watercraft have been utilized by human beings all around the world since time immemorial. For this reason, the study of canoes can serve as a gateway to analyze, compare and learn from the world’s cultures and the unique histories therein.
However, our education systems struggle to connect with students’ lived experiences in ways that honor their home culture and engage in ways that are greater than the sum of their parts. Decontextualized educational experiences have shown to be problematic within the formal education system. Moreover, in our current climate of high stakes testing and curriculum reforms that fail to account for the diversity within contexts of education, students are left listless towards schooling that ineffectively attaches to anything meaningful in their lives. Each community and regional context affords seemingly endless opportunities for connecting curriculum to on the ground issues that are meaningful and relevant to students’ lives.
In this article, we are going to tell the story of how a David Thompson-style canoe served as the curricular centerpiece for a 4th grade learning expedition that explored the confluence of cultures throughout Idaho’s history.
alouse Prairie Charter School (PPCS) is a public, K-8 school located in the community of Moscow, Idaho. Moscow has approximately 25,000 residents and is the home of the University of Idaho. Within Moscow there are multiple K-8 schools including two public charter schools. PPCS being one, has approximately 120 students in grades K-8. PPCS espouses the Expeditionary Learning (EL) model, which will be discussed below. PPCS students experience two learning expeditions each year in grades K-5 and three per year in grades 6-8. Some examples of expedition topics are: historic buildings in the community, how plants grow and their many uses, regional water conservation, geology of the region, human rights with immigration, the Israeli-Palestinian conflict, the sixth mass extinction, and the giant Palouse earthworm, to name just a few.
The EL approach has its roots in Outward Bound and began in 1992 (Cousins, 2000). EL can be traced back to Kurt Hahn and some of his progressive boarding school curriculum that led to the forming of Outward Bound as early as 1933. The EL model is based on ten design principles that guide the development and implementation of learning expeditions. The ten principles emphasize self-knowledge, caring and collaborating with others, active engagement in the natural world, and active learning based on the whole person (Expeditionary Learning, 2011). Teachers within EL schools work to develop learning expeditions that integrate educational standards across disciplines and leverage resources within the local and regional communities to enhance the student experience by showing that there is a rhyme and reason to the educational activities that students are engaged in.
The 4th grade class at PPCS embarked on the Confluence of Cultures learning expedition in the spring of 2017. In the state of Idaho, 4th grade social studies standards focus on westward exploration and expansion and Idaho tribes. In an effort to bring the historical content alive, a serendipitous connection was made within the local community of Moscow between the 4th grade teacher and graduate students who had extensive experience in boat building and river navigation. The idea of building a canoe with the 4th grade students at PPCS quickly took on a life of its own. A David Thompson style cedar plank canoe was deemed appropriate for this learning expedition as it integrates the cultural influences of European and Indigenous peoples throughout the history of Western North America. In 1811, David Thompson, an English-born explorer and geographer, led the first expedition to navigate the Columbia River from its headwaters to the Pacific Ocean. Thompson also created a series of maps that provided the most complete record of western North America into the nineteenth century. Through his explorations, Thompson interacted closely with many Native American peoples and built seven cedar plank canoes that incorporated both European and Indigenous techniques. The David Thompson style canoe was not only appropriate for this project given the historical geographies in which the canoe was built and used, but also a feasible option for available financial resources and the time required by the canoe-building guides to complete the project.
The community of Moscow, Idaho is located on historic Nez Perce tribal lands and is situated between two reservations, the Coeur d’Alene and the Nez Perce. Additionally, Moscow is within close proximity to the Clearwater and Snake rivers, two major waterways that have historical significance for navigation, fishing, and inhabitation. Moscow is located in the Inland Northwest, and the many rivers of the region connect people, culture and historical events as they flow together and make their way to the Pacific Ocean. People and cultures coming together to influence each other, just as our rivers do, has played a significant role in the history of Idaho and the Inland Northwest region. Furthermore, there is a revival of canoe culture in Idaho and the Inland Northwest, resulting in canoes from different cultures coming together. It is with this in mind that the Confluence of Cultures learning expedition sought to build on local resources to create meaningful learning for the 4th grade students.
The Curriculum
The building of the David Thompson style cedar plank canoe served as the thread that wove the entire learning expedition together. Rigorous history, social studies, and literacy work in the classroom was balanced with hands-on woodworking throughout the semester. Individually, each student hand-carved their own paddle and collaboratively as a team/crew, the students built a 21 foot cedar canoe. Here we explain the main elements of the classroom curriculum, as well as corresponding canoe specific activities. The curriculum for the learning expedition spread across the spring semester and included a short kick-off unit followed by three discrete month-long case studies.
Kick-off unit. In the kick-off unit, 4th grade students began learning about the historic and current mixing of cultures in Idaho, and beyond, and how this process has shaped who we are. Students started this journey by reading about interactions between Columbus and the Arawak people and critically analyzing who really “discovered” America. Then student groups were assigned one of five federally recognized tribes in Idaho and created posters to present general information about their tribe, including the types of canoes they made and used, as well as maps highlighting both historical territories and current reservation boundaries.
During the kick-off unit, along with being introduced to historical canoe styles, students were presented with a variety of activities to learn about woodworking. For example, students learned about the various tools that would be used to build the canoe and paddles. Safe use of tools and proper technique were emphasized up front. Students were also able to practice using the tools with expert supervision to ensure proper technique.
Case study #1. In the first case study, students studied the history of westward exploration and expansion in the United States, and began to understand both positive and negative impacts of the confluence of cultures in our history. Students learned about the canoe supported expeditions of Lewis & Clark Corps of Discovery, David Thompson, and subsequent westward expansion (i.e. colonization), with particular focus on the impacts on Indigenous peoples. They read and examined stories about the Nez Perce War, the Navajo Long Walk, and the Cherokee Trail of Tears.
During the first case study, students began carving their individual paddles and also helped with canoe building tasks where applicable. For the former, students outlined the shape of the paddle based on body length measurements to ensure that their paddles would fit them perfectly. Once the shape was set, an adult used a jigsaw to cut the cedar board. From there, students began using hand planes and other woodworking tools to refine the shape of the paddle. This task would carry through both case study #1 and #2.
Case study #2. In the second case study, students discovered the power of storytelling to understand culture. They explored the meaning of “culture” by defining their own personal values, making an artistic poster to express how our design principles help us shape our school culture at PPCS, and learning about Indigenous cultures directly from experts, including Shoshone-Bannock, Oglala Lakota, San Carlos Apache, and Nez Perce tribal members. Next, students studied the structure and elements of written and told stories. They analyzed picture books to identify the structure of a story and elements of culture, learned the elements of oral storytelling from an expert storyteller, evaluated videos of Indigenous storytellers using these elements, then practiced using these elements to tell the class a myth from an Idaho tribe.
As students shaped and sanded paddles, there were numerous opportunities to work on building the canoe. For example, students measured the keel board and secured it to the gunwales using a clamp that supports bending to create the shape of the canoe. Students also laid out the ribs and measured with their hands where the ribs needed to be bent. Then they labeled the ribs to denote where the ribs would go on the canoe. Once the ribs were bent, the students helped by pouring hot water on the ribs as they were being positioned and secured which provided the full shape of the canoe. Once ribs were in place, students sawed the ribs extending beyond the gunwales flush and also sanded sharp edges throughout the process. Students participated in ways that were within their abilities throughout the project. This was oftentimes a sliding scale with some students taking more initiative than others, or showing more aptitude for woodworking. Every student was vested in the canoe building process.
Case study #3. For the third case study, each student interviewed family members about their family values and culture, and wrote stories with their “family motto” as the theme. Students used a high-quality criteria checklist together with peer and teacher feedback for multiple drafts and revisions. Then they practiced telling their stories using the elements of storytelling they had previously studied, and prepared to tell their stories around the campfire at their Celebration of Learning. Throughout the expedition, students identified words of wisdom that they would want to strive to live by and recorded them in their handmade journals. By integrating what they learned throughout the three case studies, each student wrote a nugget of wisdom that expressed a genuine and valuable lesson that they learned from experts (people and texts) about the confluence of cultures.
With the canoe almost to completion, students began preparing for the water. Students created potential names for their canoe and voted to name the canoe Burning Wisdom. Then students, their family members, and community members engaged in the canoe-building process participated in a naming ceremony where Burning Wisdom was officially given her name and wished well on all future river journeys. Next, student’s artistically wood burned their unique nugget of wisdom into the gunwale and thwarts of the canoe so that their message of understanding and hope about the confluence of cultures can be read by all who paddle in Burning Wisdom. Students then oiled the canoe and paddles and learned about water safety in preparation for the Celebration of Learning and the maiden voyage of Burning Wisdom. At the final Celebration of Learning, students paddled their hand-crafted canoe on the Snake River, together with members of their own families and traditional canoe families who brought their own dugout canoes from throughout the region.
The Work of Canoe Building
Canoes as a vessel of education allows students to draw connections between their local waterways and the cultures traditionally travelling and utilizing those waterways. Because all canoes are different and are designed in tandem with the region’s environment, the act of building a canoe with students and community members can provide an authentic gateway into deep learning. Grounded in place-based educational theory, using the canoe as a vessel for education is readily adaptable to any region’s waterways and traditional watercrafts. Below we discuss three key elements that should be considered when creating a canoe building educational experience with youth.
Collaborate with a local master canoe builder. If you are not familiar with canoe building it is critical to connect and collaborate with a master canoe builder who is familiar with the geographically relevant canoe style. It is important to connect with those who are interested in teaching their craft and working with youth, and who are willing to adjust their canoe building routines with the teachers desired scheduling. Ideally, the canoe builder would be in charge of sourcing all materials and tools; however, the teacher may be required to purchase supplemental tool/materials as needed. If you do not know a local canoe builders, here are several methods to aid in the finding of a canoe builder:
- Google search – A simple internet search using keywords such as “traditional canoes of the Pacific Northwest” or search for a “traditional canoe builder” in your town.
- Native American Tribes – Traditional canoes are built by tribal members across the Northwest and these canoe builders are knowledge keepers for both their people and the regions in which they live.
- Wooden Canoe Heritage Association (WCHA) – The WCHA serves as a gathering place for canoe builders across the country. With online forums and social media, a local canoe builder is just a click away: www.WCHA.org.
Decide on the canoe building location. Where the canoe building takes place matters. An ideal space would be outdoors in a location on the school premises. However, some canoes are suitable for indoors, provided that the canoe builder approves of the location. Additionally, for some traditional canoes a fire is a vital canoe building tool for bending wood or soaking (in warm water) raw materials. If a fire is not possible, propane burners can be used to supplement a heat source. If outdoors, a covered, dry area will ensure the students’ comfort while they build their canoe. And finally, it is critical that the space be open and large enough to accommodate parents and community members who come to observe or help build the canoe. An ideal space would be big enough for many people to gather, and have the option of serving food, having a fire, and creating a community bond.
Connect canoe building to curriculum. The degree that the canoe building project is integrated into the curriculum is left to the teacher’s discretion. However, from our experience we believe that careful integration can make this project very powerful while meeting state requirements for multiple subjects and skills. Additionally, the teacher must communicate with the canoe builder to ensure compatibility with classes and building schedules. We recommend that the students visit the canoe site at least three times a week. This ensures the student’s engagement with each step of the process and provides enough hands-on education for the students to learn actual wood working skills. So as to not completely burden the students and teacher, the canoe builder will typically continue working on the canoe throughout the days when no students are scheduled to visit.
One of the most rewarding aspects of using the canoe as an educational vessel is discovering and uncovering the myriad of ways to integrate canoe building with the curriculum and educational standards that must be met. While this requires some degree of creativity, simple lesson plans can be created to explore principles of mathematics, for example, using scale model canoes using ratios, speed, displacement and hydrodynamics or even determining the mass of a dugout canoe (compared to the log before it was carved). Additionally, environmental science standards can be met through the exploration of the species of trees and plants required to build a canoe, which opens up opportunity to explore forest ecology, invasive species, and other relevant topics. And as illustrated by the Confluence of Cultures curriculum model described above, canoe building provides a unique and culturally relevant opportunity to explore history and different cultures’ uses of canoes on their local waterways.
When possible, we advise that the canoe builder facilitate and provide a paddle carving module to the canoe building project. While some steps in canoe building are quite technical and tedious, we have demonstrated students from the 4th grade and up are capable with carving their own canoe paddle in three to four weeks. The opportunity for students to carve their own paddles allows for an individual sense of accomplishment while the canoe is a collaborative group project.
Organize a trip to paddle the canoe. Finally, canoes are built to be paddled. It is critical to plan a culminating maiden voyage where the youth launch and paddle the canoe that they built. This should take place at a local waterway that the students learned about during the course of the year. The paddle event can occur in the course of an afternoon, or more ideally, with a full day or overnight experience. For the paddling component, we recommend that you can coordinate with a local watersports organization or outdoor recreation program who can provide life jackets and expertise in water safety protocols. These culminating voyages are a ceremony to honor the canoe but also the students and community members who participated in the project.
Secure funding. Projects like this require funds. Often times in-kind resources can get a project down the path quite a ways. Depending on the level of resources needed that cannot be procured through local volunteers, plan to budget between $2,000 and $10,000 to adequately cover costs. We have found local education funds are of reasonable magnitude to support an effort such as this. For example, we recently were awarded approximately $10,000 for the upcoming academic year to build another David Thompson style canoe with PPCS 4th graders and collaborate with a regional tribal school building a traditional dugout canoe.
Lessons Learned
Throughout the building of the canoe as a narrative thread of the Confluence of Cultures learning expedition, many lessons were learned that may prove helpful for readers interested in doing a similar project within their context. We will share lessons learned from the perspective of the teacher and lead author, Ms. Hill.
- Standards-based education can be hands-on, meaningful and authentic! If it can be, then it should be. If research and practice show that it works to achieve educational goals, then when it is possible in the context, then that should be the goal. In this particular learning expedition, I was able to hit all of the required social studies and English Language Arts (reading, writing, speaking, and listening) standards in the classroom, AND we had time to build a canoe. So my main message is that it can be done. Teachers and administrators, I encourage you to be brave. I truly believe that you can make it work with the right types of support and resources in place.
- Spending the time on these types of hands-on projects makes the classroom work so much more meaningful. It is very clear that these kids will remember this experience for the rest of their lives, and it was all connected to the social studies content and literacy skills that they would be learning in fourth grade with or without this type of project.
- Parents and other family members became so incredibly involved in the project and engaged in the classroom learning through this project. They were deeply inspired to see their children accomplish such huge tasks such as safely using woodworking tools, hand-carving their own paddles specially fit to their own body measurements, and working together as a crew family to build a canoe that they could paddle in together. For some children and families, this was their first canoe trip.
- Students and families were incredibly inspired by the opportunities to authentically and genuinely interact with Indigenous peoples through this project and the paddle/camping trip.
- Local and regional Indigenous peoples were very willing and honored to work with us on this project, on both the social studies content and canoe-building pieces. These connections made the project authentic and meaningful. The genuine support of local tribal members was apparent in receiving invitations for future paddling opportunities and with funding for a future project to work closely with the 4th grade class in Lapwai, Idaho.
- A key element for success of a project like this is that the teacher has a very close working relationship with a local nonprofit or other group or individual to do this type of project (i.e., Voyages of Rediscovery, and local Indigenous partners). Our EL model of education at PPCS embraces this type of outreach and collaboration very well, and I would encourage other teachers in any other school system or teaching model to think about how to do this within their own contexts.
Conclusion
The canoe building component proved to be an invaluable addition to the learning expedition for the PPCS 4th graders. Students were able to associate the content of the curriculum to a meaningful and tangible context represented by the David Thompson style canoe. The canoe brought people together that otherwise wouldn’t have had a reason to work together, which led to powerful learning opportunities. By opening the school doors to the possibilities of building a canoe, we found that the risk was rewarded in outcomes much greater than we had anticipated. The effort was completely worth it.
References
Cousins, E. (Ed.). (2000). Roots: From outward bound to expeditionary learning. Dubuque, IA: Union-Hoermann Press.
Expeditionary Learning (2011). Expeditionary learning core practices: A vision for improving schools. New York, NY:
Authors
Renée Hill is the fourth-grade teacher at Palouse Prairie Charter School (PPCS) in Moscow, Idaho. Using the Expeditionary Learning (EL) model, she has engaged her students in inquiry-based projects including building a David Thompson style canoe as a symbol of the confluence of cultures throughout Idaho’s history.
Dr. Brant G. Miller is a science educator at the University of Idaho. He teaches science methods and technology integration and does research on Adventure Learning.
Adam Wicks-Arshack is a PhD student in the Water Resources Department at the University of Idaho. Adam has facilitated educational expeditions and canoe building projects throughout the Pacific Northwest.
by editor | Jan 22, 2019 | Indigenous Peoples & Traditional Ecological Knowledge, Place-based Education
This article is a story of how fourth-grade students in Moscow, Idaho studied the confluence of cultures throughout Idaho’s history by building a canoe, hand-carving paddles, and actively participating in the resurgence of the traditional canoe throughout the Pacific Northwest region. We hope you enjoy seeing our work and seeing how we went through this process!
Editor note: This article was written by fourth-grade students at Palouse Prairie Charter School during the spring of 2018. Students were guided through the process in groups and this narrative is the product of that work. The teacher and collaborating faculty from a local university supported the writing, editing, and revision process. The level of adult guidance varies in each section. Students wrote this as an extension of the article “Burning Wisdom: The Canoe as a Vessel for Learning” published in the Fall 2017 issues of CLEARING, which documented the previous year’s canoe-building project with a focus on the curriculum.
magine a life with no cars, no planes, no city buses, only canoes. Imagine you are in Idaho 200 years ago, that you are surrounded by rivers, and you mainly travel by canoe. For the indigenous peoples of Idaho and throughout the United States, the canoe used to be the main means of transportation and communication. Many tribes around the region, including the Kalispel, Coeur d’ Alene, and Nez Perce (Nimi´ipuu) of Idaho, have not built canoes for over one hundred years. For example, up until 2018, the Nimi´ipuu had not made a dugout for one hundred and thirteen years. The reason for this is that throughout the process of colonization of indigenous peoples in the 1800s and 1900s, many tribes were removed from their land and prohibited from practicing their cultures. For example, their children were taken to boarding schools and taught that it was bad to live by their cultures, speak their languages, and build their canoes. The importance of the traditional canoe for the inhabitants of this land was temporarily hidden, but it is coming back. By building their traditional canoes again, indigenous peoples are reclaiming their culture.
In our fourth-grade class at Palouse Prairie Charter School (PPCS), we spent a semester studying the westward exploration and expansion of the United States, colonization, the impacts on indigenous peoples who have inhabited our region’s lands for centuries, and the cultural revival that is currently happening through the resurgence of the traditional canoe. During this time, we spent ten weeks building a David Thompson style cedar plank canoe. David Thompson was the first known explorer to navigate the length of the Columbia River, from headwaters to the Pacific Ocean. He also made some of the first maps of the region. David Thompson built many canoes on his voyages by combining European canoe forms and Indigenous techniques that he learned from peoples he met along the way. We built our canoe as an example and memory of the confluence of cultures in our region – the Northwestern United States.
The Resurgence of the Traditional Canoe – Native Perspectives
We are hoping to capture our learning and reflections in this article. Many texts available to children (and to people in general) are written from the perspective of settlers. We interviewed members of tribes in Idaho who are helping build canoes to bring back their cultures. We interviewed Nathan Piengkham from the Kalispel tribe, and Standing Red Bear (Gary Dorr) from the Nez Perce tribe in order to tell you the story from their points of view. Both Nathan and Gary have been helping people reconnect to indigenous canoe culture by building canoes together with their tribal and non-tribal communities. We have included their stories as part of the learning and reflections that we share in this article. We have also prepared transcripts of these interviews as two separate short articles following this one. We hope that their stories help you see the importance of playing an active role in the resurgence of the traditional canoe in the Northwestern United States. We also hope that their stories help you respect people that might have a different culture than you.
Standing Red Bear, our Nimi´ipuu friend helped build New Medicine, the first Nimi´ipuu dugout canoe on the Nez Perce Reservation in 113 years. He taught us about the historical and cultural importance of canoes for native peoples and led us in ceremony to extend peace and safety to all the people who help carve and will travel in this canoe.
“Canoes were our hunting rigs, our grocery carts, we rode across the river to collect berries in them. We’re building canoes again now to reclaim part of our culture.”
– Standing Red Bear, Nez Perce Tribe
Read Gary’s complete interview here
“The canoes are bringing our communities together.”
– Nathan Piengkham, Kalispel Tribe.
Read Nathan’s complete interview here
The tribes are bringing back the canoe. And it is having a very positive impact on their lives. Nathan Piengkham from the Kalispel Tribe explained, “Instead of turning to drugs and alcohol or other boring stuff, or instead of leaving the tribe and going somewhere else, now people can stay home and work with the canoes. They can learn our Salish Language of the Kalispel Tribe, and they can learn how to get the natural foods from our mountains.” As the fourth-grade crew, we are thankful to be part of this historically significant movement.
How has the confluence of cultures shaped who we are?
Throughout our semester-long learning expedition, we studied many topics in order to try to answer one overarching question. The “guiding question” we started with was “How has the confluence of cultures shaped who we are?” Throughout our studies we continually came back to this question to reflect on our own answers. An important part of figuring out how to answer this question was understanding what confluence of cultures means.
To explain the meaning of confluence of cultures, we will break it up into separate words. First, culture is how people live and interact. Many people have a different understanding of culture. In our class, we interviewed a handful of our own students to see what they think culture means. There were various different viewpoints of culture which include traditions, stories that are passed down from generation to generation that allow people to experience the history of their culture, what a person does for a living, what a person does on a daily basis, what people do and believe in, and the values we teach, learn, and live by. The important thing that we agreed on is that we all respect each other even if we are different.
We discovered that culture has many layers. The outer layers are the things that you can see, like clothing, food or language. As you get deeper into the layers the parts of culture get more meaningful and harder to see, like the social norms we follow, and our values and beliefs. An example of these layers of culture is shown in Figure 1 below.
Figure 1. The layers of culture
Second, a confluence is a place where streams or rivers merge or flow together.
A confluence of cultures is when cultures meet and merge. Sometimes when two cultures meet they flow together and sometimes they clash. Sometimes cultures come together in perfect balance and sometimes not. We studied the clash of cultures that occurred between Columbus and the Arawaks, and between settlers and indigenous peoples during colonization as the United States expanded its territory westward. We also studied the flow of cultures that occurred when the Nimi´ipuu welcomed Lewis and Clark, nursed them back to good health and showed them the way to the Pacific Ocean. We studied many examples of the confluence of cultures in Idaho’s history, both positive and negative. But did you know that we are an example of the confluence of cultures just by doing this expedition? We visited the site in Lapwai, Idaho where the Nimi´ipuu were building their canoe New Medicine, and we also went to the Lapwai Senior’s Center and to the Lapwai Boys and Girls Club to spread kindness. Both are real examples of the confluence of cultures in our lives as fourth graders.
The confluence of cultures has shaped our ancestors, our own personal histories, and continues to shape our lives today. We spent ten weeks building our canoe as a symbol of the confluence of cultures in our lives – past, present, and future.
Building a David Thompson-style cedar plank canoe
Step 1: The math
In building a canoe, the first step is the math. We had to do some mathematical calculations to see how much wood to buy and to create a good plan for building. Without doing the math for the canoe we might have bought the wrong amount of wood, went over our budget, or wasted resources. We started by making estimations, which got better the further we got into the process of building our canoe. Eventually all the measurements added up and then we were ready to start building it! Here is an example of how we applied fourth-grade math to calculate how much wood we would need for the ribs of the canoe.
We knew the canoe would be 22 feet long. We multiplied 22 feet by 12 inches (because there are 12 inches in one foot) to find that the canoe would be 264 inches long. We also knew that every four inches, there would be a two-inch rib and a two-inch open space. So, we divided 264 inches by 4 inches, to find that we would need a total of 66 ribs for the canoe. Next, we needed to find the average length of the ribs in order to decide how much wood we needed to buy to make the ribs. We used Burning Wisdom, (the canoe that last year’s fourth-grade crew built) to take some measurements. We found that Burning Wisdom also had 66 ribs and the average length of these ribs was 52 inches. Then, we multiplied 66 ribs by 52 inches to find that we would need 3,432 inches of wood for the ribs. Then, we converted this to linear feet by dividing 3,432 inches by 12 inches to get a total of 286 linear feet. So, we knew we would need 286 linear feet of wood for the ribs.
Step 2: The gunwale
Then we made the gunwale, which is two long planks bent together to make the top shape of the canoe. The gunwale consists of inner and outer planks called the inwale and the outwale.
Step 3: The keel
Xander (pronounced Zander), our canoe-building guide, built the keel board. It consisted of three small boards glued together and bent into a “C” like shape. We connected each end of the keel to each end of the gunwale. This formed the frame of the canoe!
Step 4: The ribs
Then we soaked the rib planks in water so that we could carefully bend them into the shape of the ribs. We used last year’s canoe (Burning Wisdom) to bend the ribs over so that we could get the correct shape of the wood for each rib. Then, we screwed the end of each rib to the gunwale and the middle of each rib to the keel so that the ribs would stay in place. Together the ribs, keel and gunwale are like the skeleton of the canoe.
Step 5: The planks
Next, we built the planks. The planks are like the skin on a human. The planks are many long, flat pieces of wood covering the ribs so that water cannot get in while we are paddling in the river. The planks of the canoe are like the skin on a human.
Step 6: The fiberglass layer and epoxy
Next, we covered the outside of the canoe with a transparent fiberglass cloth, covered in epoxy. These layers will help keep water out of the canoe, but still let us appreciate the wood of our handmade cedar plank canoe.
Step 7: The name
Giving a name is an important part of welcoming a new canoe into the canoe family. Our class felt very lucky to help bring culture and canoes back to the native peoples of the land where we now live. Every canoe gives a little bit of culture back to the indigenous peoples in the area, which we took away from them long ago. As a crew we decided to name our canoe Blooming Culture because blooming means coming back. Flowers bloom in the spring, but they are always there as seeds. The tribes were never really gone and now they are making a huge effort to make their cultures more visible to tribal and non-tribal peoples. We should respect their cultures and help them with these efforts. Blooming Culture will send the message that culture is blooming again and canoes are helping with that. Our canoe is helping to bring back culture.
Step 8: Family mottos and paint
After studying how indigenous storytelling reveals culture and values, we interviewed our family members about our own family values and culture. We wrote stories with our “family motto” as the theme, and we each woodburned our family motto on the inside of the gunwale.
Finally, it was time to paint our canoe. We wanted our canoe to represent the seven directions in indigenous way of life that our experts taught us about. We painted our canoe with a medicine wheel to symbolize how it will carry our greatest hopes to all four cardinal directions – North, East, South and West. The stripes on the bottom of the canoe represent the fifth and sixth directions – green for Earth and blue for Sky. And the children sitting in the middle paddling the canoe represent the seventh direction – The Center.
The paddle-making process
Making paddles is an important part of the canoe-building process. You have to have a paddle to go out on the water in a canoe. Standing Red Bear told us that Nimi´ipuu children used to carve paddles while the men did the heavy working with logs to build the canoes. Similarly, this semester we worked on carving our paddles while we were waiting to learn a new step to build our canoe, or for our turn to do a specific job. Each fourth-grade student hand-carved their own cedar paddle. Together we made twenty-four paddles. Just like our canoe, all twenty-four of our paddles also help to bring back culture.
To make our paddles, first we had to find a cedar board that was about our height from the ground up to our chin. Next, we measured the distance from our armpit to the tip of our fingers to find the length of our shaft. Then, we used these measurements to draw out the shape of our paddle on our board. Then we used a hand planer and a spokeshave to take off layers and layers of wood until we liked the weight of the paddle and its general shape. The hand planer helped with taking off large curls of wood and rounding the edges. The spokeshave was good for shaving off smaller layers and with more detailed rounding.
Finally, we were ready to sand. We started by marking with crayon the places on one side of the paddle that needed to be sanded. First, we used 60 grit sandpaper to take all the crayon marks off then repeated the process with 100 grit, then 120, and lastly 150 grit. We repeated this same process on the other side. When both sides were smooth and soft, we were done sanding and ready to decorate our paddles. We used a hand saw to cut off chunks of wood we didn’t need, like the top of the ribs that stuck out above the gunwale.
We decorated the shaft and handle of the paddles by woodburning quotes with a message about protecting the cultural and natural resources of the land that native and non-native peoples share, and the importance of creating a true confluence of cultures. We collaborated with PPCS seventh-grade students who painted coastal formline art on the blades to express the connection between rivers, salmon and orcas, work which was guided by Samish Nation artists and part of their middle school spring learning expedition.
The power of the EL Education Model
Our school, Palouse Prairie Charter School, uses the EL Education (formerly called Expeditionary Learning) model. In this model, we balance rigor and joy. This means that we learn new things, and have fun while meeting Idaho State Education Standards for Social Studies, Literacy, Art and Humanities, and Science. The paddles and canoe we built shows how EL Education encourages us go out into the world, explore new ideas and work with and for people instead of only sitting at a desk to meet fourth-grade standards.
A key component of EL Education are the experts that teach us and help us with our projects. We want you to know about the many people who spent their time and energy to help us in this project. Two experienced canoe builders from Voyages of Rediscovery, The River School spent ten weeks guiding us through every step of building our canoe and carving our paddles. Several additional experienced canoe and paddle wood workers in the region helped us find better techniques to carve our paddles and helped us build our canoe. Several regional tribal members taught us about their cultures, shared stories with us, led us in ceremonies, and joined us in the canoe-building process. Two experienced storytellers from the University of Idaho taught us some storytelling techniques. An employee of NRS taught us how to be safe on the water for our canoe trip. Members of indigenous canoe families performed a naming ceremony for our canoe at our paddle trip and paddled with us in their own handmade dugout canoes. And a professor from the University of Idaho helped us write this article so we could share our story with you. All of this work was made possible by the financial support of the Nez Perce Tribe Local Education Program Fund and the Latah County Community Foundation. Thank you all for helping us!
Another key element of the EL Education model is Celebration of Learning, or a public event where we share our discoveries and hard work with our community. As our Celebration of Learning, we organized a paddle and camping trip to take our canoe on its first journey. On June 2-3, 2018 we paddled our canoe on the Snake River, together with traditional canoe families from throughout the Pacific Northwest region. At this event, two members of the regional indigenous canoe family led us in a naming ceremony to give Blooming Culture her name.
A canoe is a sacred piece of art and hard work that many Native Americans had lost and now are bringing back. Canoes are culture that needs to be preserved.” -Fourth-grade student
As fourth-grade students, we gained respect, understanding and curiosity about indigenous history and culture. When our teacher asked us about the most important things we learned in this project, one student said, “I discovered that the confluence of cultures was really a clash of cultures, like Gary said. We didn’t really flow together. The settlers pushed the Nez Perce off their land and forced them to leave. I now know that my house is really on Nez Perce land.” Another student stated, “I learned about the past, how hard it was, and how we still ended up in peace. I learned that we can have peace even when it is hard.” Another student said, “Our project matters because we went back in history and talked about what actually did happen and what should have happened.”
Our teacher also asked us about our hopes for the future confluence of cultures in Idaho. One student replied, “I hope that more people will care about the past. If kids keep learning about our history, I think we can keep honoring the people who did amazing things for us. It’s incredible how hard so many people fought to keep their tribes together when we moved onto their land. We all need to remember this.” Another student answered, “I hope that this canoe keeps reminding us of the past and remembering the amazing people of the past, and the amazing people of now. We need to remember what it was like in the past and what people went through, and I think this canoe is a good reminder!”
Acknowledgements
The PPCS fourth-grade crew would like to thank the many individuals for supporting us academically and personally throughout this project. We could not have done it without you!
by editor | Feb 23, 2015 | Environmental Literacy, Indigenous Peoples & Traditional Ecological Knowledge, Marine/Aquatic Education, Place-based Education, STEM
It Takes a Community to Raise a Scientist:
A Case for Community-Inspired Research and Science Education in an Alaskan Native Community
By Nievita Bueno Watts and Wendy F. Smythe
The quote, “lt takes a village to raise a child,” is attributed to African tradition and carries over to Alaskan Native communities as well (Hall, 2000). Without the support of their community and outside resources, Alaska Native children have a difficult time entering the world of science. Yet increasing the awareness of science, as a tool to help a tribal community monitor and maintain the health of their environment, introduces conflicts and misconceptions in context of traditional cultural practices. Rural communities depend upon traditional food harvested from the environment such as fish, wild game, roots, and berries. In many Native Alaskan villages the health of the environment equals the health of the people (Garza, 2001) . Integrating science with culture in pre-college education is a challenge that requires sensitivity and persistence.
The Center for Coastal Margin Observation and Prediction (CMOP) is a multi-institutional, National Science Foundation (NSF) Science and Technology Center that takes an interdisciplinary approach to studying the region where the Columbia River empties into the Pacific Ocean. Two of CMOP’s focus areas are biogeochemical changes affecting the health of the coastal margin ecosystem, and socio-economic changes that might affect the lives of people who harvest and consume fish and shellfish.
The Columbia River waters touch the lives and livelihoods of many people, among them a large number of Pacific Northwest lndian tribes. These people depend on the natural and economic resources provided by the Columbia River. Native peoples from California through Alaska also depend on resources from their local rivers, and, currently, many tribes are developing-a workforce trained with scientific skills to manage their own natural resources in a way that is consistent with their traditional way of life. The relationship between Traditional Knowledge (TK) and practices, which are informed by centuries of observation, experimentation and carefully preserved oral records, and Western Science, which is deeply rooted in the philosophies and institutions of Europe, is often an uneasy one.
National progress is being made to open pathways for individuals from Native communities to Western Science higher education programs and back to the communities, where tribal members are empowered to evaluate and monitor the health of their environment. CMOP is part of this national movement. CMOP science is developing tools and techniques to observe and predict changes in the river to ocean system. CMOP education, an essential element of CMOB supports American lndian/Alaska Native students in pursuing academic and career pathways focusing on coastal margin sciences (Creen et al., 2013). One of CMOP’s initiatives is the CMOP- School Collaboratories (CSC) program.
CMOP-SCHOOL COLLABORATORIES
The CMOP-school Collaboratories (CSC) program is based on the idea that Science, Technology, Engineering, and Mathematics (STEM) pathway development requires an intensive and sustained effort to build relationships among science educators, students, school personnel, and the tribal community. The over-arching goal is to broaden participation in STEM disciplines. CMOP educators developed the CSC model that includes integration strategies for a community, development of appropriate lessons and field experiences and student action projects that connect local and traditional knowledge with science. Educational experiences are place- based, multi-disciplinary and culturally relevant. The objective is to open students’ minds to the reality of the need for scientists with many different world views and skill sets working together to address our planet’s pressing problems in a holistic manner. CMOP seeks to encourage these students to be part of that solution using both Traditional Knowledge and STEM disciplines.
The program encourages STEM education and promotes college preparatory awareness. This CSC program has three unique characteristics: it introduces coastal margin science as a relevant and viable field of employment; it integrates STEM learning with Traditional Knowledge; and, it invites family and community members to share science experiences. The example presented in this article describes a four-year program implemented in a small village in Southeast Alaska, 200 miles from the capital city of Juneau.
Figure 1: Students, scientists, a cultural expert. and a teacher with scientific equipment used to collect data from the river.
ALASKA NATIVE VILLAGE CASE STUDY
Wendy Smythe, a CMOP doctoral candidate and principal investigator for an NSF Enhancing Diversity in the Geosciences (OEDC) award, is an Alaska Native Haida. As she advanced in her own education, she wanted to share what she had learned with the youth of her tribal community, striving to do so with the blessing of the tribal Elders, and in a way that respected the Traditional Knowledge of the Elders. Dr Bueno Watts is a mentor and expert on broadening participation. She acts in an advisory capacity on this project.
The village school consists of l5 staff members and 50 K-l2 students, with the school experiencing high administration turnover rates. ln the first two years of the program we recruited non-native graduate students to participate in the CSC program. This effort provided them experience working in Native communities. ln the last two years we recruited Native American undergraduate interns to teach lessons, assist with field activities and provide students with the opportunity to become familiar with Native scientists [Figure 1]. lnterns formed part of the science team.
STEPS TO GAIN ENTREE TO A VILLAGE
The community must support the concept to integrate science education with traditional practices. Even for this Alaska Native (Smythe), the process of building consensus from the tribe and gaining approval from the Elders and school district for the program was a lengthy one. The first step required letters of support from school district and tribal leaders. The difference in geographical locations proved difficult until Smythe was able to secure an advocate in the tribe who spoke for her at tribal meetings. Face-to-face communications were more successful than distance communications. Persistence proved to be the key to achieving success at getting the consensus of community leaders and school officials’ support. This was the top lesson of l0 learned from this project (Table l).
Traveling to the school to set up the program is no small feat and requires extensive coordination of transportation and supplies. A typical trip requires a day-long plane ride, overnight stay in a nearby town to prepare and gather supplies, a three-hour ferry ride, acquisition of a rental truck and a one-hour drive. Accommodations must be made to board with community members.
The development of appropriate lessons for the curriculum engaged discussions with tribal Elders and community Ieaders on an individual basis. Elders agreed to provide videoed interviews and were given honoraria as a thank you for their participation. Smythe asked the Elders what scientists could do to help the community, what stories can be used, where students and educators could work in the community to avoid intruding on sacred sites, and what information should not be made public. Once Elders agreed to provide interviews and share stories, other community members began to speak about their lives and concerns. This included influence of boarding schools, Iife as it was in the past, and changes they would like to see within the community. This was a significant breakthrough.
Table l . Lessons Learned: ten things to consider when developing a science program with Native communities
1. Persistence is key.
2. Face to-face communication is vital and Lakes time.
3. A community advocate with influence and respect in the community is critical.
4. Consult with the Elders first. They have their finger on the pulse of the community and are the center “of the communication network. Nothing happens without their approval. Find out what it is okay to talk about and where your boundaries are and abide by them. lnclude funds for honorariums in your proposal. Elders’ time and knowledge is valuable and they should be compensated as experts.
5. Partner with individuals or groups, such as the Department of Natural Resources.
6. Find a relevant topic. Be flexible with your curriculum choice. It must reflect the needs and interests of the community and the abilities of the teacher you are working with.
7 . Be prepared, bring supplies with you. Ship items in advance if going to a remote location
8. Have the ability to provide individual instruction for students who need it to prepare projects and practice giving presentations.
9. lnvolve the community. Hold events in a community center to encourage everyone to attend.
10. View your involvement as a long-term investment in a committed community relationship.
ln addition to the Elders, support was needed from a natural resources representative who functioned as a liaison between our group and the community members. This person’s role is found in most villages and could be the head of the Department of Natural Resources or a similar tribal agency that oversees fish, wildlife, and natural resources. This person provides a critical link between the natural environment and the community. The next step is to go in the field with the natural resources representative, science teachers, EIders, and interested students to identify a meaningful focus for the community. lnitially we focused the project with a scientist’s view of teaching microbiology and geology of mineral deposition in a river ecosystem. However, the team found community interest low and no enthusiasm for this project.
Upon our return to the village, the team and CMOP educators found the focus, almost by accident. We were intrigued by “boil water” notices posted both at the home in which we were staying and on the drinking fountains at the school: The students were all talking about water, as were the Elders. It was clear that the community cared about their water quality. The resulting community-inspired research educational plan was based on using aquatic invertebrate bioindicators as predictors of water quality (Adams, Vaughan & Hoffman Black, 2003). This student project combined science with community needs (Bueno Watts, 2011).
CURRICULUM LESSONS
The first classroom lessons addressed water cycle and watershed concepts (Wolftree, 2OO4), which were followed by a field lesson on aquatic invertebrates. Students sampled different locations in an effort to determine biodiversity and quantity of macroinvertebrates. While students were sitting at the river’s edge, the site was described in the students’ Alaska Native tongue by a cultural expert, and then an English translation was provided. This introduced the combination of culture and language into the science lesson.
Figure 2: Students use data loggers to collect data on temperature, pH, and location.
The village water supply comes from a river that runs through the heart of the community. Thus, this river was our primary field site from which students collected water for chemical sampling and aquatic invertebrates using D-loop nets. Physical and chemical parameters of the river were collected using Vernier LabQuest hand-held data loggers. Students recorded data on turbidity, flow rate, temperature, pH, and pinpointed locations using CPS coordinates (Figure 2].
Aquatic invertebrate samples were sorted, classified, counted, recorded, and examined through stereoscopes back in the classroom. Water chemistry was determined by kits that measured concentrations of alkalinity, dissolved oxygen, iron, nitrate/nitrite, dissolved carbon dioxide, and phosphate.
Microbiology assessments were conducted in an effort to detect fecal coliform (using m_FC Agar plates). Students tested water from an estuary, river, drinking fountain, and toilet. Results from estuarine waters showed a high number of fecal coliform, indicating that a more thorough investigation was warranted While fecal coliform are non-disease causing microorganisms, they originate in the intestinal tract, the same place as disease causing bacteria, and so their presence is a bioindicator of the presence of human or animal wastes (Figure 3).
Students learned that the “dirty water” they observed in the river was actually the result of a natural process of acidic muskeg fluids dissolving iron minerals in the bedrock, no health danger. The real health threat was in the estuarine shellfish waters. Students shared all of their results with their families, after which community members began to approach the CMOP science team with questions about the quality of their drinking water. The community was relieved to find that the combined results of aquatic invertebrate counts and water chemistry indicated that the water flowing through their town was healthy. However they were concerned about the potential contamination as indicated by fecal coliform counts in the local estuary where shellfish were traditionally harvested.
ln the second year, a curriculum on oceanography developed by another STC, the Center for Microbial Oceanography: Research and Education (C-MORE) was introduced (Bruno, Wiener, Kimura & Kimura, 2011). Oceanography lessons focused on water density as a function of salinity and temperature, ocean currents, phytoplankton, and ocean acidification, all areas of research at CMOP. Additional lessons used local shipworms, a burrowing mollusk known to the community, as a marine bioindicator (CMOP Education, 2013). Students continued to conduct bioassessments of local rivers and coastal marine waters.
Figure 3: Students sort and count aquatic invertebrates as a bioindicator of river health.
Students used teleconferencing technology to participate in scanning electron microscope (SEM) session with a scientist in Oregon who had their samples of aquatic invertebrates. Students showcased their experiments during parent day. Five students (l0%) had parents and/or siblings who attended the event.
SHARING KNOWLEDGE
As a reward for participation in the science program, two students were chosen to attend the American lndian Science and Engineering Society (AISES) 2009 conference in Oregon. Travel expenses were shared between the school, CSC program, and the tribe. ln the following three years an additional ten students attended the AISES conference and presented seven science research posters in New Mexico. Minnesota and Alaska. ln 2012, one student won 3rd place for her shipworm poster presentation (Figure 5). These conference presentations enabled some students to take their first trip out of Alaska.
ln May 20ll the first Science Symposium for grades K-12 allowed students to share their science projects with parents, Elders, and tribal community members. Both students and teachers were prepared on how to do a science fair project. Work with students had to be accomplished on a one-on-one basis, and members of the team were paired with students to assist with completing projects and polishing presentations. Students were not accustomed to speaking publicly, so this practice was a critical step.
The event was held at the local community center, which encouraged Elders and other community members to attend.
Elders requested a public education opportunity to teach the community about watersheds and the effects of logging. Our team incorporated this request into the science symposium. Students led this project by constructing a 5D model of the watershed for display. People could simulate rainfall, see how land use affects runoff and make runoff to river estuary connections. Scientists conducted hands-on demonstrations related to shipworms, local geology, ocean acidification and deepsea research. Language and culture booths were also included. During the symposium, a video of one of the interviews we had conducted with an Elder was shown as a memorial to his passing. The symposium was considered a huge success and was attended by 35 students and 50 community members.
COMMUNITY RESPONSE
The CSC program garnered results that could not have been predicted at the outset. For example, the tribe requested our input when deciding which students should attend a tribal leadership conference and summer camp. Three student interns participated in a collaborative project with the tribe to conduct bio-assessment studies of local rivers and a key sockeye breeding lake. lnterns operated a remotely operated underwater vehicle (ROV) for data collection, resulting in video documentation of the salmon habitat. ln addition to the bio-assessment, the interns conducted interviews with Elders about the rivers in the monitoring project. The results of this study were used to stop logging around sockeye spawning habitat and to ban the harvest of shellfish from contaminated parts of the estuary. Now the tribe is monitoring rivers on its own. ln the near future CMOP plans to install a sensor that can be monitored remotely, and to train people to read and interpret the data.
CONCLUSION
Community-inspired research often produces a ripple effect of unforeseen results. ln this case, inclusion of Elders in the design and implementation of the project produced large scale buy-in from community members at all age levels. Consequently, in a village where traditionally students did not think about education beyond high school, we have had two students attend college, two students attend trade school, five students receive scholarships, and eight Native interns conducting science or science education in the community. And, given the low numbers of Alaska Natives pursuing careers in science, we find those numbers to be remarkable.
REFERENCES
Adams, J., Vaughan, M., & Hoffman Black, S. (200i). Stream Bugs as Biomonitors: A Guide to Pacific Northwest Macroinvertebrate Monitoring and Identification. The Xerces Society. Available from: http://www.xerces.org/identification-guides/#
Bruno, B. C., Wiener, C., Kimura, A., & Kimura, R. (2011). Ocean FEST: Families exploring science together. Journal of Geoscience Education, 59, 132.1.
Bueno Watts, N. (20,1 1). Broadening the participation of Native Americans in Earth Science. (Doctoral dissertation).
Retrieved from Pro-Quest. UMI Number: 3466860. URL http ://repository.asu.edu/items / 9 438
Center for Coastal Margin Observation & Prediction. QO13). Shipworm lesson URL http://www.stccmop”org/ education/k1 2/geoscience/shipworms
Carza, D. (200.l). Alaska Natives assessing the health of their environment. lnt J Circumpolar Health. 6O@):a79-g6.
Creen, V., Bueno Watts, N., Wegner, K., Thompson, M., Johnson, A., Peterson, T., & Baptista, A. (201i). Coastal Margin Science and Education in the Era of Collaboratories. Current: The Journal of Marine Education. 28(3).
Hall, M. (2000). Facilitating a Natural Way: The Native American Approach to Education. Creating o Community of Learners: Using the Teacher os Facilitator Model. National Dropout Prevention Center. URL http://www. n iylp.org/articles/Facilitating-a-Natural-Way.pdf
Wolftree, lnc. (200a). Ecology Field Cuide: A Cuide to Wolftree’s Watershed Science Education Program, 5th Edition. Beavercreek, OR: Wolftree, lnc. URL http://www. beoutside.org/PUBLICATIONS/EFCEnglish.pdf
ADDITIONAL RESOURCES
The educational resources of CMOP are available on their website : U R L http ://www. stccm o p. o rg / education / kl 2
ACKNOWLEDGMENTS
CMOP is funded by NSF through cooperative agreement OCE- 0424602. Smythe was also supported by NSF grant CEO-I034611. We would like to thank Dr. Margo Haygood, Carolyn Sheehan, and Meghan Betcher for their assistance and guidance with the shipworm project. We would like to thank the Elders and HCA for their guidance, advice and encouragement throughout this program
Nievita Bueno Watts, Pn.D. is a geologist, science educator, and Director of Academic programs at the NSF Science and Technology Center for Coastal Margin Observation & Prediction (CMOP). She conducts research on broadening the participation of underrepresented minorities in the sciences and serves on the Board of Directors of the Geoscience Alliance, a national organization dedicated to building pathways for Native American participation in the Earth Sciences.
Wendy F. Smythe is an Alaska Native from the Haida tribe and a Ph.D. candidate at the NSF Science and Technology Center for Coastal Margin Observation & Prediction. She runs a geoscience education program within her tribal community in Southeast Alaska focused on the incorporation of Traditional Knowledge into STEM disciplines.
by editor | Dec 9, 2014 | Indigenous Peoples & Traditional Ecological Knowledge
Ecological Métissage: Exploring the Third Space in Outdoor and Environmental Education
By Greg Lowan
An increasing number of scholars, both Indigenousi and non-Indigenous, are asking, “Is it possible to blend Western and Indigenous North American ecological philosophies and knowledge?” Indeed, many scholars and educators, such as the late Nakoda Chief John Snow (1977–2005), suggest that the future success of our society will require the combined wisdom of Aboriginal and non-Aboriginal cultures.
Eminent Tewa scholar and educator Gregory Cajete (2001) relates the story of one of his family members who has a “split head”. This family member is of mixed Euro-American and Indigenous Tewa ancestry and often feels split between the two cultures. Cajete suggests that many people in our predominantly Western society built on the Indigenous territories of Turtle Island (North America) also have a split head; our sociocultural and geographical identities are often disjointed. John Ralston Saul (2008) provides a related view when he suggests that Canadians have forgotten (or been led to forget) the foundational Aboriginal aspects of our culture and languages, resulting in an incomplete national sense of self. Cajete proposes that the ultimate task at hand is to recognize this and find ways to heal the split head of our collective society, blending the best of Western (and other) and Indigenous cultures to create a unified whole.
Figure 1. The Third Space. The Third Space makes some people uncomfortable because “hybridity problematizes boundaries” (Pieterse, 2001, p. 220)
In response to these kinds of concerns, Métis scholar Catherine Richardson (2004, p. 16) introduces the concept of the “Third Space” as the existentially blended territory of a Métis mentality. She compares this to the “First Space” of the dominant Euro-Canadian society and the “Second Space” of colonially subjugated Aboriginal peoples. However, during a recent conference presentation, one audience member astutely pointed out to me that the First Space here on Turtle Island was, in fact, Aboriginal, followed by the European Second Space, which resulted in the Third Space of the Métis (see Figure 1, below). The Third Space is a place where Western, Aboriginal and other cultural beliefs, philosophies, values and knowledge intersect, cohabit and intermingle (Richardson, 2004).
. Zembylas and Avraamidou (2008) propose that challenging this further opens up the Third Space. Pieterse suggests that hybridity involves recognizing the “in-betweens” and “interstices” (p. 238) and pushes us beyond false dualistic conceptions of culture and race. According to Pieterse, the Third Space requires “collective liminality, collective awareness” (p. 239) similar to the Trickster knowledge celebrated in many Indigenous cultures. Finding the Third Space involves collectively embracing a hybrid or Trickster consciousness.
Figure 2 . Finding common ground betweenWestern science and Indigenous knowledge (Barnhardt and Kawagley, 2005).
Alaskan scholars Ray Barnhardt and Oscar Kawagley (2005) provide the illuminating Venn diagram below to compare and contrast Western and Indigenous approaches in search of common ground. From their diagram we can see that there are indeed many similarities between Western science and Indigenous knowledge of nature. Concepts such as a unified universe; personal qualities such as perseverance, curiosity and honesty; empirical observation of nature; and a desire to understand the behaviour and patterns of plants, animals and other natural phenomena are common to both traditions.
Aikenhead (2008) uses the Ancient Greek terms “episteme” and “phronesis” respectively to describe Western science and Indigenous knowledge. He defines episteme as thinking focused on how the world works and phronesis as practical wisdom- in- action. Baumard (1994) defines phronesis as a blend between “techne”, which is practical knowledge, and episteme. However, he also suggests that the Greeks actually recognized four dominant forms of knowledge: episteme (theoretical or philosophical knowledge), techne (practical knowledge), phronesis (theoretically informed practice) and “metis”ii (oblique or intuitive knowledge), a term etymologically related to the Latin “mixtus”, meaning mixed, which is the root of modern terms such as “métissage” (Dolmage, 2009). Baumard suggests that while episteme, techne and phronesis have been widely recognized and preserved in Western history, metis (pronounced “meh-tiss”) was suppressed and ignored until Détienne and Vernant’s (1974, 1991) seminal efforts in its recovery. As a Métis person, I find the etymological, epistemological and ontological implications of metis as a way of understanding and being in the world deeply intriguing.
Metis as a form of knowledge was suppressed in Western history for various reasons. Dolmage (2009) suggests that metis wasn’t widely recognized for the past two thousand years because of its associations with femininity embodied in the form of the goddess Metis, one of Zeus’s wives and the mother of Athena. Détienne and Vernant (1974, 1991) also propose that metis has been suppressed throughout Western history because of its association with animals and nature. Examples of metis in Greek mythology and philosophy often involve the dolos (tricks or ruses) of animals like the fox, the octopus or the squid, which is able to turn itself inside out. In their concluding chapter, Détienne and Vernant (1974, 1991) suggest that:
In studies of the Greeks pursued by scholars who claim to be their heirs, there has been a prolonged silence on the subject of the intelligence of cunning [metis]. The fundamental reasons for this have been two-fold. The first is perhaps that, from a Christian point of view, it was inevitable that the gulf separating men from animals should be increasingly emphasized and that human reason should appear even more clearly separated from animal behaviour than it was for the ancient Greeks. The second and even more powerful reason is surely that the concept of Platonic Truth, which has overshadowed a whole area of intelligence with its own kinds of understanding, has never really ceased to haunt Western metaphysical thought. (pp. 318–319)
The oblique, intuitive and subtle boundary-crossing characteristics of metis as a way of knowing and being in the world could be considered as a more flexible alternative to the absolutist legacy of Platonic thought that is reflected in the single-culture nationalism of, for example, many European nations and the United States (Saul, 2008). This idea might prove illuminating in our search for the Third Space between Western and Indigenous knowledge and wisdom.
Two-Eyed Seeing—viewing the world simultaneously through both Western scientific and Aboriginal lenses to form a focused and unified vision—is another theory developed by Mi’kmaq Elder Albert Marshall (Lefort and Marshall, 2009).
Concepts such as the Third Space, healing the split head, Two-Eyed Seeing and metis provide a compelling theoretical basis for exploring intercultural environmental ethics and education. I use the term “ecological métissage” to collectively describe these concepts. The concept of ecological métissage arises from Thomashow’s (1996) description of “ecological identity” as the way that we understand ourselves in relation to the natural world and an understanding of “métissage” as a mixing or blending often associated with culture or ethnicity (Pieterse, 2001). Therefore, ecological métissage denotes a blending of two or more ecological world views in personal identity, philosophy and practice. The following explores examples of ecological métissage in practice.
Intercultural outdoor and environmental education is a growing field of practice with a limited but growing body of literature. Many organizations across Canada and around the world are currently delivering programs designed to bridge cultures. While some programs aim to share Indigenous knowledge with Indigenous students only, others are open to both Indigenous and non-Indigenous students. Other programs also attempt to blend Indigenous knowledge with modern scientific approaches, seeking the previously discussed Third Space. The following is a brief review of a selection of programs and key scholars in these areas. One study that I first encountered during my master’s research (Lowan, 2008, 2009) was Takano’s (2005) description of a community-developed land -based cultural education program based in Igloolik, Nunavut. Takano, a researcher of Japanese descent, participated in Paariaqtuqtut, a 400 kilometre journey through the community’s ancestral territory in May 2002. Paariaqtuqtut means “meeting on the trail” in Inuktitut and was developed by a group of community members and Elders. Paariaqtuqtut aims to connect young people with cultural skills and teachings in a land-based context. Takano (2005) found that community members in Igloolik were concerned that many youth were losing connections with their land and culture. Those interviewed observed that this leads to youth feeling lost between two worlds, disconnected from their community and culture, yet unprepared to live in the Western world. Takano also recorded the experiences of several participants who felt that Paariaqutuqtut had helped them to reconnect with their land and culture.
David Lertzman (2002) and Thom Henley (1989) provide descriptions of the Rediscovery program. Rediscovery programs have been founded across North America and around the world in various forms. Some are very small and focused on one particular Aboriginal community while others, such as Ghost River Rediscovery (Lertzman, 2002) in Calgary, are large, year-round programs. Ghost River Rediscovery is based on local Indigenous traditions and welcomes students of all ages from all cultural backgrounds. I have had the wonderful opportunity to volunteer with them on several occasions. Henley (1989), one the program’s original founders, states, “Rediscovery brings together people from many different racial backgrounds . . . . When people from different races have the opportunity to talk to one another, to work and play together, then inevitably they begin to learn about each other’s lives and cultures” (p. 35).
As previously mentioned, a recent issue of Green Teacher (Fall, 2009) focused on Mik’maq Elder Albert Marshall’s concept of Two-Eyed Seeing. Several programs embodying Two-Eyed Seeing were profiled. For example, Hatcher and Bartlett from Cape Breton University’s Integrative Science program (2009a, 2009b; Bartlett, 2009) describe units that they developed on various subjects, such as birds, traditional medicine and astronomy, for high school students. In their units they attempt to integrate Western science with Mi’kmaq knowledge and philosophies of nature. They recognize that truly blending Western and Indigenous approaches is a challenging task for educators.
Further examples of inspiring Two-Eyed Seeing programs are provided in the same issue of Green Teacher. Métis educators Deanna Kazina and Natalie Swayze (2009) relate their experiences with “Bridging the Gap”, an inner-city program in Winnipeg that works with both Aboriginal and non-Aboriginal youth. Bridging the Gap strives to integrate Western and Aboriginal approaches to learning about the natural world. Based on their description and another article by Swayze (2009) in the Canadian Journal of Environmental Education, it appears thatthey are experiencing success. Kazina and Swayze instill genuine cultural awareness in their students through lessons such as how to offer tobacco and how to respectfully approach the Elders who are a strong part of their program.
Gloria Snively (2009) also relates her experiences as a long-time teacher-educator at the University of Victoria interested in what she calls “cross-cultural science”. She uses a lesson on dentalium, a shell traditionally used as money by Indigenous people across North America, as a vehicle for discussing Two-Eyed Seeing. Snively observes:
Cross-cultural science education is not merely throwing in an Aboriginal story, putting together a diorama of Aboriginal fishing methods, or even acknowledging the contributions Aboriginal peoples have made to medicine. Most importantly, cross-cultural science education is not anti -Western science. Its purpose is not to silence voices, but to give voice to cultures not usually heard and to recognize and celebrate all ideas and contributions. It is as concerned with how we teach as with what we teach. (p. 38)
While there is a growing body of literature on intercultural outdoor and environmental education in Canada, no comprehensive studies to date have focused on the experiences and competencies of intercultural outdoor and environmental educators and the deeper societal implications of their work. Who are these “border crossers” (Hones, 1999; Nguyen, 2005; Pieterse, 2001)? What led them to their chosen vocation? What makes them effective? And how might they be reshaping Canadian ecological identity? Why is this important? These are the kinds of questions that I am currently addressing in interviews with contemporary intercultural outdoor and environmental educators as part of my doctoral research.
i Cultural terms, such as Indigenous, Aboriginal, Western, and Elder, have been intentionally capitalized as a sign of respect. ii In this article “Métis” refers to Métis people, while “Metis” will be understood as a figure from Greek mythology, with “metis” denoting a recognized form of knowledge in ancient Greek society.
References
Barnhardt, R., & Kawagley, A. O. (2005). Indigenous knowledge systems and Alaska Native ways of knowing. Anthropology and Education Quarterly,36(1), 8–23.
Bartlett, C. (2009). Mother Earth, Grandfather Sun. Green Teacher, 86, 29–32.
Cajete, G. (2001). Indigenous education and ecology: Perspectives of an American Indian educator. In J. A. Grim (Ed.), Indigenous traditions and ecology: The interbeing of cosmology and community. Cambridge, MT: Harvard University Press.
Detienne, M., & Vernant, J. P. (1974). Les ruses de l’intelligence: La mêtis des Grecs.Paris: Flammarion. Detienne, M., & Vernant, J. P. (1991). Cunning intelligence in Greek culture and society. Trans. Janet Lloyd. Chicago: U of Chicago Press.
Dolmage, J. (2009). Metis, mêtis, mestiza, Medusa: Rhetorical bodies across rhetorical traditions. Rhetoric Review, 28(1), 1–28.
Hatcher, A., & Bartlett, C. (2009a). MSIT: Transdisciplinary, cross-cultural science. Green Teacher, 86, 7–10. Hatcher, A., & Bartlett, C. (2009b). Traditional medicines: How much is enough. Green Teacher, 86, 11–13.
Henley, T. (1989). Rediscovery: Ancient pathways, new directions, outdoor activities based on native traditions. Edmonton: Lone Pine Publishing.
Hones, D. F. (1999). Making peace: A narrative study of a bilingual liaison, a school, and a community. Teachers College Record, 101(1), 106–134.
Kazina, D., & Swayze, N. (2009). Bridging the gap: Integrating Indigenous knowledge and science in a non-formal environmental learning program. Green Teacher, 86, 25–28.
Lefort, N., & Marshall, A. (2009, May). Learning with the world around us: Practicing two-eyed seeing. Paper presented at the 5th World Environmental Education Congress, Montreal, PQ.
Lertzman, D. (2002). Rediscovering rites of passage: Education, transformation, and the transition to sustainability. Ecology and Society, 5(2): Article 30.Retrieved February 27th, 2007 from http://www.ecologyandsociety.org/ vol5/iss2/art30/ Lowan, G. (2008). Paddling tandem: A collaborative exploration of Outward Bound Canada’s Giwaykiwin Program for Aboriginal youth. Pathways: The Ontario Journal of Outdoor Education, 20(1), 24–28.
Lowan, G. (2009). Exploring place from an Aboriginal perspective: Considerations for outdoor and environmental education. Canadian Journal of Environmental Education, 14,42–58.
Nguyen, N. H. C. (2005). Eurasian/Amerasian perspectives: Kim Lefevre’s Métisse Blanche and Kien Nguyen’s The Unwanted. Asian Studies Review, 29,107–122.
Pieterse, J. N. (2001). Hybridity, so what?: The anti-hybridity backlash and the riddles of recognition. Theory, Culture & Society, 18(2–3), 219–245.
Richardson, C. L. (2004). Becoming Metis: Therelationship between the sense of Metis self and cultural stories. Unpublished doctoral dissertation, University of Victoria, Victoria, BC.
Saul, J. R. (2008). A fair country: Telling truths about Canada. Toronto, ON: Penguin Group.
Snively, G. (2009). Money from the sea: A cross-cultural Indigenous science activity. Green Teacher, 86, 33–38. Snow, J. (2005). These mountains are our sacred places. Calgary, AB: Fifth House.(Original work published 1977).
Swayze, N. (2009). Engaging Indigenous urban youth in environmental learning: The importance of place revisited. Canadian Journal of Environmental Education, 14, 59–72.
Takano, T (2005). Connections with the land: Land-skills courses in Igloolik, Nunavut. Ethnography, 6(4), 463–486. Thomashow, M. (1996). Ecological identity. Cambridge, MA: MIT Press.
Zembylas, M., & Avraamidou, L. (2008). Postcolonial findings of space and identity in science education: Limits, transformations, prospects. Cultural Studies in Science Education, 3, 977–998.
Greg Lowan is a proud member of the Métis Nation of Canada. He is currently a contract lecturer of Aboriginal Education at Lakehead University and a PhD candidate in Educational Contexts at the University of Calgary. This research is supported by the Social Sciences and Humanities Research Council of Canada (SSHRC), the Killam Trust and the University of Calgary. This article originally appeared in Pathways: The Ontario Journal of Outdoor Education 2010, 23(2).