by editor | Sep 17, 2015 | Conservation & Sustainability
Environmental Education: The Science of Learning and Doing
by Cecelia Bosma
Trinity Lutheran School
Litchfield, Arizona
e live on a planet with limited resources that are often consumed without caution. Finding ways to engage students in pro-environmental behaviors that conserve these limited resources rather than take them for granted is a priority for environmental educators. The human population also needs to work on understanding the benefits and risks we take with our daily behavior. Conserving the use of paper towels at home and in public is one easy pro-environmental behavior that will have a positive impact on the environment. Paper towels do not just use up trees, they also require large amount of water for production and they end up in landfills which generates pollution as they slowly decompose. However there are numerous alternatives to using paper towels at home and at school. These alternatives are efficient effective and financially thrifty. Often times conservation practices are rejected because they are time consuming and or costly. Alternatives to paper towels are neither. The financial benefit is an incentive for people that don’t relate to the environmental impact of using paper towels.
Last fall, I designed a project to engage my eighth grade science class in a meaningful scientific inquiry project that assisted in deepening students’ understanding of the importance of conservation action through environmental education. The project action focused on eliminating paper towels in school bathrooms. There are many environmental benefits to reducing the amount of paper towels manufactured. One benefit is the reduction of trash in landfills because generally bathroom paper towels cannot be recycled. Another benefit is the reduction of chemicals leaching back into our soil from decomposing paper towels. This in turn saves trees from being processed into paper towels. Environmental benefits are also found in the amount of water consumed in the manufacturing of paper towels, and the reduced amount of fuel burned transporting paper towels.
Getting started on an inquiry project that is focused on building environmental knowledge through conservation action on the school campus can be a challenge. I have been working middle school students on various inquiry projects to build environmental knowledge for several years. Each time I start a project I am learning right along with my students. This project was no exception. Sharing ideas about inquiry and lessons that motivate students to learn and build knowledge is how we as teachers can help each other build stronger lesson plans that benefit our students and communities.
Project Inspiration
Educating adolescents about the impact they have on their environment is necessary for nurturing lifelong environmental stewardship (Nancy & Kristi, 2006). In the last twenty years, environmental education has been gaining a stronger foothold in classrooms across America (Stevenson, Peterson, Bondell, Mertig, & Moore, 2013). The purpose of environmental education is to teach students how to make responsible decisions, using critical thinking in order to take action to maintain or improve our environment (Short, 2010). Educators should encourage even small steps toward environmental conservation, as they are building blocks to lifetime environmental conservation action (Short, 2010). Accordingly, the primary goal of environmental education is to instill knowledge that leads to pro-environmental actions and behaviors for individuals, groups and society (Heimlich, 2010). I have found that engaging the learners in hands on actionable learning has a positive effect on the outcome of environmental education.
The burgeoning population of planet Earth has brought about observable changes in the environment both in populated and unpopulated regions of the world (Short, 2010). Scientists have observed these drastic changes in the form of melting ice caps, ozone depletion, deforestation and global warming, all of which can be attributed to human actions (Tidball & Krasny, 2010). Therefore, it is society’s responsibility to take action to improve the current environmental status that threatens the very existence of humans (Stevenson et al., 2013).
Additionally, it is important to incorporate positive actions into environmental education (Tidball & Krasny, 2010). Instead of focusing on what is wrong with our environment. Students are motivated by positive changes that help our environment such as recycling. Inquiry style learning is one way to incorporate positive action. Increasing environmental knowledge is a crucial part of environmental education (Grodzińska-Jurczak, Bartosiewicz, Twardowska, & Ballantyne, 2003). This project incorporated the inquiry process into the environmental education program. The students construct their learning by observing, asking questions and problem solving (Crawford, 2000). The inquiry process is a way for students to do science like a real scientist. Educating school children about environmental concerns now will promote action in the future (Evans et al., 1996).
The Project
A class of twelve eighth grade students took part in the paper towel conservation inquiry project. The project began with students watching the video that inspired me “How to use a paper towel” (Smith, 2012). Upon completion of the video, students were asked what they thought of the video and if they thought there were other ways that we could conserve paper towels in the bathrooms on our campus. Following the video students took a trip to the boys’ and girls’ bathrooms nearest to our classroom. Science class is at the end of the day, and students observed the piles of used paper towels in the garbage and on the ground.
They were challenged to develop a plan for measuring the volume of paper towels that were used daily for a week. Students worked in pairs to identify a plan which was presented the next day in class. Students then voted on the plan they thought would work the best and took steps to put it into action. One students brought in a scale from home and others created a data sheet for recording the measurements taken daily of the weight of paper towels used in each bathroom.

Table 1 Paper towel weight chart created by students

Table 2 Financial comparison of paper towels versus hand dryers created by students
The students tracked the amount, in pounds, of paper towels used in the 3 sets of boys’ and girls’ bathrooms for 5 days. This data was calculated and graphed to demonstrate the amount of paper towels that our school is disposing into the landfill each day. A total of 288 pounds of paper towels are thrown in the trash each week from the collective school bathrooms (figure 1). Students contacted the person on staff who handles the ordering of paper towels to determine that the school spends about $350.00 on paper towels each month. This information was tabulated into the final graph that compared the expense of paper towels versus the expense hand dryers (figure 2). The graph shown in figure 1 and 2 were developed by students; while it could be perfected it is meant to demonstrate the capabilities of middle school students. Upon completing the charts students noticed that the older students used considerably more paper towels than younger students did.
Students brainstormed alternative ideas to using paper towels. They researched hand dryers, cotton towel dispensers and looked at the practicality of using personal towels. After researching each option, they used the data they collected on alternatives to paper towels to create a presentation to share with fellow students, parents and the church board who has a strong influence on decision making changes. The conclusion of the study resulted in the student recommending the installation of new efficient hand dryers that dry hands in 12 seconds or less. As the students pointed out in their presentation the machines are also designed to kill germs in the air and on the skin (Gagnon, 2007).
The presentation was videotaped and posted on the school website. Posting the video required getting permission from all of the parents. This was worthwhile effort because the students were then able to share what they had learned accomplished and produced with their own community of friends and neighbors. This made it possible to spread the idea of replacing paper towels with hand dryers to the larger community outside of our school.
The final piece of this project was to present a written proposal to the Board of Directors for consideration. Students were given the task and some guidelines and they had to collaborate and compromise to develop a well written proposal that included their research and data results. The objective of the assignment was to persuade the board to approve the installation of hand dryers in the bathroom. The proposal was completed and presented, and is now being considered for implementation.
Action and Reflection
The benefit of inquiry learning is that it provides a method for gaining deeper knowledge about a subject, in this case environmental education, and it also builds students skills in problem solving and analysis. This project provided students the opportunity to conduct science like a scientist. They observed and questioned. Then they looked for alternatives, conducted research, devised an action plan and carried out an investigation. The final part of the project included compiling their findings and presenting to decision makers. Encouraging and guiding students to learn about their environment and then to take action is taken to authentic level when it involves real and actionable projects. It is my hope that the board finds merit in the study and takes the necessary steps to change to electric hand dryers. This action will mitigate the burden, the use of paper towels, puts on our environment.
I know that this project was beneficial in bolstering students’ knowledge of environmental issues. Throughout the project students took ownership of each step and worked diligently to complete the work. The following are several comments from students at the end of the project.
“I liked being able to go outside for science.”
“I hope that hand dryers are installed in the bathrooms”
“I worked really hard on this project because it might be good for our school”
This paper towel action-centered conservation project works to build students conservation and knowledge that works to promote continued conservation action (Stevenson et al., 2013). Schools are looking for ways to keep the material fresh and relevant for the students incorporating inquiry science works towards that goal. We have a planet with limited resources, and an economic system that often ignores that fact. As time goes by the need for action is even more crucial for the survival of all of us. Paper towel reduction is one idea that students can be engaged in environmental education. We have to find ways for students to not only learn about importance of caring for our environment but that knowledge must lead to continued environmental action for the objective to be met.
As a teacher, focusing on improving techniques to guide inquiry learning, leads to discovering ways to make projects authentic and real. Utilizing inquiry in environmental education provides students an enriching learning environment. This is my story of a journey to use inquiry as a catalyst for environmental change. Embrace your story.
Bibliography
Crawford, B. A. (2000). Embracing the essence of inquiry: new roles for science teachers. Journal of Research in Science Teaching, 37(9), 916-937. doi: 10.1002/1098-2736(200011)37:93.0.CO;2-2
Evans, S. M., Gill, M. E., & Marchant, J. (1996). Schoolchildren as educators: The indirect influence of environmental education in schools on parents’ attitudes towards the environment. Journal of Biological Education, 30(4), 243-248. doi:10.1080/00219266.1996.9655512
Gagnon, D. (2007). Paper Trail. American School & University, 80(1), 30.
Grodzińska-Jurczak, M., Bartosiewicz, A., Twardowska, A., & Ballantyne, R. (2003). Evaluating the impact of a school waste education programme upon students’ parents’ and teachers’ environmental knowledge, attitudes and behaviour. International Research in Geographical and Environmental Education, 12(2), 106-122. doi:10.1080/10382040308667521
Heimlich, J. E. (2010). Environmental education evaluation: reinterpreting education as a strategy for meeting mission. Evaluation and Program Planning, 33, 180-185. doi: 10.1016/j.evalprogplan.2009.07.009
Short, P. C. (2010). Responsible environmental action: its role and status in environmental education and environmental quality. Journal of Environmental Education, 41(1), 7-21. doi: 10.1080/00958960903206781
Smith, J. (2012, March). How to use a paper towel. Retrieved from: https://www.ted.com/talks/joe_smith_how_to_use_a_paper_towel
Stevenson, K. T., Peterson, M. N., Bondell, H. D., Mertig, A. G., & Moore, S. E. (2013). Environmental, institutional, and demographic predictors of environmental literacy among middle school children. PLoS ONE, 8(3), 1-11. doi: 10.1371/journal.pone.0059519
Tidball, K. G., & Krasny, M. E. (2010). Urban environmental education from a social-ecological perspective: conceptual framework for civic ecology education. Cities and the Environment(1). Retrieved From: http://digitalcommons.lmu.edu/cate/vol3/iss1/11/
Wells, N. M., & Lekies, K. S. (2006). Nature and the life course: Pathways from childhood nature experiences to adult environmentalism. Children Youth and Environments, 16(1), 1-24.
by editor | May 26, 2015 | Outdoor education and Outdoor School
Tips for bringing students into the field: Strategies for success
By Joshua Klaus
Director of Academic Programs, Ecology Project International (EPI)
aking students into the field can provide an endless array of occasions to learn new skills, see theoretical concepts enacted, make connections, and learn about the world around us. Given the endless places that offer valuable learning opportunities, it must just be a matter of heading out the door for students to have impactful educational experience, right?
Though it would be nice if it were that easy, there are a few key strategies that will allow any educator (novice or veteran) to make the most of their time – before, during, and after their field experience.
Educators will have a higher likelihood of success if they keep the following things in mind:
• Go outside! The natural world offers limitless educational opportunities. Given the amount of time students spend in front of computers, screens, and isolated from weather, plants, and animals, exposure to the natural world is a fantastic way to engage students’ bodies and minds.
• Real-world projects: Involving students in applied research, service-learning, and conservation or community-related projects will give them a sense of connection to something larger than themselves.
• Find good partners: Working with established land managers, non-profit organizations, or government agencies can help provide additional resources, information, expertise, and motivation.
• Incentivize good work: Offer students school credit, lab hours, or community service credits if they meet or exceed your expectations while in the field.
• Have fun! Focusing on specific learning outcomes is a good idea, but balancing learning with fun, exploration, and freedom will increase the likelihood that students will have a positive, meaningful experience.
Preparation:
As the old adage instructs, failing to adequately plan and prepare often means planning for failure. Preparing students for a field experience is of paramount importance and should include setting clear expectations about goals and behavior, in addition to providing students with the tools, background, vocabulary, and knowledge necessary for success and high-quality outcomes. Advance preparation might include proper gear and equipment, safety protocols, practicing field methodology in advance, and providing a theme or integrating context for learning. At the very least, prior to heading into the field students should be given a structured opportunity to determine what they already know about a particular place or activity in addition to the chance to articulate what questions they have and what they’d like to learn. This could be as simple as asking students to draw a picture, make a list, or tell a partner what they know about a concept. Additionally, individuals could make a K-W-L chart, and the entire group could share the information in the ‘W’ column.
Adequate advanced preparation will help students stay comfortable, safe, and well-fed! By engaging students in managing risks they might encounter in the field – whether hiking on a trail or crossing a busy street – they’ll have a better understanding of the potential dangers they’ll encounter as well as the rationale for making appropriate decisions that will help keep them safe. When students understand why they should do something (instead of just being told they should) they’ll cultivate a deeper sense of ownership and personal responsibility.
Collaboration/ maximizing resources
Many organizations, government agencies, and companies are more than willing to host a group of visiting students. Call the local fisherman to take a tour of his boat, approach the university about a tour of the wet lab, or ask a conservation group to give an on-site presentation to your class about their restoration projects. Experts often love to talk about what they do and are happy to share their knowledge with students. When teaching in Oakland, CA one teacher took his physics class to a boat yard a couple blocks away and a crusty sailor taught them about mechanical advantage and pulley systems used for dry docking and offloading cargo. When the Pixar Studio in nearby Emeryville was under construction, his students crawled around the open foundation with a bunch of engineers who were delighted to tell them all about how they designed the building to withstand a 9.0 earthquake. Think creatively about what you consider a ‘field’ experience, and likely you’ll discover a long list of wonderful opportunities right within your community.
The wheel already exists
Talk to your local conservation group, nature center, government agency, or tourist outfitter about what you would like to do and ask if they can help. Many of these groups have some kind of educational mandate associated with their work, and if you can help them achieve their goals by involving your students in their work, they will likely be accommodating.
Go for it!
For beginning teachers, it’s a great idea to keep things simple until you establish a track record of success with your students and within your community. Start with small, accessible field experiences before making too large a commitment. That being said, despite the importance of preparation (as described above), don’t over-think your first field experiences. Once you’ve covered your bases and the basics, it really can be as simple as heading out the door. The world awaits, so don’t worry – once you get there, your students will thank you.
by editor | Apr 21, 2015 | Equity and Inclusion
How Environmental Education Can Address Issues of Environmental Justice in Urban Settings
by Anjelique Hjarding, Alicia King and Belinda Chin
HIGHLIGHTS
• Environmental injustice occurs when the most vulnerable, poor, minority or underserved populations carry the greatest burden of environmental risk by living in “undesirable” areas.
• Environmental education can provide an opportunity to connect people to nature even in urban areas, and help empower people to mitigate environmental issues.
• Addressing the challenges of environmental justice through the support of environmental education programs can help engage people in actions to improve their environment.
• As citizens engage in environmental education and action bringing positive changes in their communities, they become more empowered to take future actions to further improve their environment.
Introduction
According to the US Environmental Protection Agency (EPA) environmental justice is defined as, “the fair treatment and meaningful involvement of all people regardless of race, color, national origin, or income with respect to the development, implementation, and enforcement of environmental laws, regulations, and policies.”Environmental injustice occurs when the most vulnerable populations carry the greatest burden of environmental risk. Environmental justice seeks to create environmental equity and address issues of environmental racism and inequalities that are the result of human settlement and industrial development. Scholars have explored the topic of environmental justice on both applied and theoretical levels. From examining the geographic distribution of toxins (Lewis & Bennett, 2013) to equitable allocation of green space (Boone et al., 2009) to the debate over how to define environmental racism, there tends to be a pattern of environmental injustice suggesting that minorities and poor people are those that live in areas considered “undesirable.”
Many of the urban communities we work with are touched daily by environmental injustices. Landfills, interstates and train lines are most often located in close proximity to low-income minority neighborhoods. These areas often have reduced access to natural amenities and green space is often distributed by socio-economic lines (Agyeman & Evans, 2003). As educators, how can we work to bring environmental justice education to the forefront?
Environmental justice issues have a history of being excluded from environmental education study (Haluza-Delay, 2012). This can occur because educators lack an understanding of environmental justice or the politics of the education system dissuades teaching on controversial topics related to race and injustice. Environmental education can provide an opportunity to connect people to nature and can help empower them to actively address environmental issues. In fact, the North American Association for Environmental Education suggests that diversity and justice should be a top priority in environmental education, and that more progress should be done in this area.
Students in the urban environment can often experience a disconnect between themselves and the natural world and may not notice their direct impacts on the environment. Lessons focused on issues such as the carbon footprint allow students to visualize their impact on the environment and will help make the issue relevant.
Seattle: Race and social justice initiative
In 2002, the City of Seattle launched its Race and Social Justice initiative, and Seattle Department of Parks and Recreation (Parks) began an Environmental Stewardship Initiative. The Race and Social Justice is Seattle’s effort to focus on the roots of problems – to change the underlying system that creates and preserves inequities – rather than attempt to treat the symptoms (Seattle, 2008). Seattle City Hall acknowledged the need to expose institutionalized racism and expunge discriminatory municipal policies, procedures and practices overall; and Parks wanted to equitably serve more people, more often in the public green spaces where people live, work and play.
In 2014, residents of a historically diverse, working class Seattle neighborhood applied for a grant from the Department of Neighborhoods to pay for an environmental assessment and design for a bike trail in a public green space imbedded within a residential area. The Parks Board of Commissioners approved the project early in the year. No one had proposed a recreational use in a public green space before. In fact, there were no policies to refer to regarding uses of public green spaces. By summer, advocates and opponents of the mountain bike trail were vying for time to speak to city council members about their points of view.
The story, as reported by the local newspaper, The Seattle Times, presented points of view that, intentionally or not, perpetuated historic social constructs (Shellenberger & Nordhaus, 2007). These included: conflicts between whites and people of color concerning uses of parklands, “people are not a part of nature,” and people of color not having access to nature unless they are working in it. Those interviewed for the article were all white residents of the area. A photograph with the story showed a white male leading a work group in the green space consisting only of youth of color (Photo 1). However, there were no direct quotes given by youth of color in the article. Imagine the empowering potential of environmental education if used in this situation as a tool to facilitate discussion for better understanding and clarity of the issues among the various stakeholders.
Both opponents and advocates of the project used environmental justice to make their arguments to City Council. Opponents claimed the mountain bike trail would “exclude all but the able-bodied,” with a neighbor quoted as saying (Seattle Times, July 28, 2014): “We’re talking about young, white male energy. This is public land. This is a social justice issue.” Advocates for the bike trail said, “…[it] would give youths who aren’t able to get out of the city an opportunity to
experience the joy of riding their bikes in the woods. And in the process… the kids
Photo 1. Volunteer work party at site of proposed bike trail.
would gain an appreciation of nature and a sense of ownership for the greenspace.”
The green space was an urban mix of invasive plant species and native flora. Neighborhood volunteers, including many youth groups, spent hours restoring the forest and installing public trails. The area attracted wildlife as well as illegal dumping, homeless encampments, and drug use. At the end, City Council voted to award the grant in favor of the bike trail, with a caveat that Parks develop policies for use of green spaces (Seattle Times, August 13, 2014).
A lot of progress has been made regarding Seattle’s institutional commitment in 2002 to expose and scrub itself of discriminatory practices, policies and procedures. That said, there is still a lot of work to be done to reach equity and social justice.
Washington,DC: Urban Bird Treaty
Urban Bird Treaty program in Washington, DC engaged with several organizations that focus on the Anacostia River. One such organization, Anacostia Watershed Society, works to engage teachers and students in public policy and advocacy actions through targeted programs.
The Anacostia has a long history as a working port and industrial river, leaving a legacy of toxic pollution that impacts the health of aquatic life and humans that fish, swim, or otherwise recreate on the river. Stormwater runoff collects trash, bacteria, and toxins, and flows into storm drains, and straight into the Anacostia River and its tributaries. With a watershed that is 70 percent developed, the Anacostia is impacted by a huge amount of impervious surface. The Anacostia River is so severely impacted by trash that in 2007 it was declared “impaired by trash” under the provisions of the Clean Water Act. Additionally, the developed areas near this river serve a primarily low-income minority population.
There are many efforts to pick up trash manually or catch it with trash traps, but ultimately trash use needs to be reduced from the source. Reducing this impact one of the biggest challenges. The Anacostia Watershed Society has several programs available for teachers and students to help engage citizens in actions that will not only teach them about the watershed environment, but also how to take actions to improve the environment and to become part of the solution.
As part of the Urban Bird Treaty program, Anacostia Watershed Society was awarded grant monies to work on several projected related to engaging diverse and minority audiences in areas that are demographically considered underserved minority neighborhoods. Sixteen teachers were mentored and equipped for the Rice Rangers program (wetland plant growing in elementary school classrooms), including 11 grow light systems set up in schools. About 300 Washington, DC students participated in a lesson on wetlands and planted native wetland seeds in classrooms, engaged in field studies on the Anacostia River by pontoon boat and participated in wetland planting events. Elementary school students grew 2200 wetland seeds in classrooms and planted the grasses in restoration plots at Kenilworth Aquatic Gardens. Kenilworth is a National Park in the inner city of Washington, DC surrounded by areas where communities are mostly underserved.
While there are not yet any statistics to show that engaging citizens in this area resulted in actions independent of the organized efforts presented to students and citizens, environmental justice actions are being shared with citizens and continued efforts are being monitored.
References
Agyeman, J., & Evans, T. (2003). Toward just sustainability in urban communities: Building equity rights with sustainable solutions. The annals of the American Academy of Political and Social Science, 590(1), 35–53.
Boone, C.G., Buckley, G.L., Grove, J.M., & Sister, C. (2009). Parks and people: An environmental justice inquiry in Baltimore, Maryland. Annals of the American Association of Geographers, 4, 767–787.
Haluza-Delay, R. (2012). Educating for environmental justice. In Wals, A.E.J., Stevenson R.B., Brody, M., & Dillon J. (Ed.), International handbook of research on environmental education (pp. 394–403). Routledge.
Lewis, T., & Bennett, S. (2013). The juxtaposition and spatial disconnect of environmental justice declarations and actual risk: A new method and its application to New York State. Applied geography, 39, 57–66.
Seattle Forestry Commission. (2014). Revised letter to Seattle Parks Commission – Mountain bike trail at Cheasty Greenspace. April 1, 2014.
Seattle Office for Civil Rights. (2008). Race and social justice initiative: Looking back, moving forward. City of Seattle.
Seattle Times. (2014). Council clears way for bike-trail work. Seattle Times, August 13.
Shellenberger, M. & Nordhaus, T. (2007). The Death of environmentalism: Global climate politics in a post-environmental world. Break through: From the death of environmentalism to the politics of possibility. New York: Houghton Mifflin Company.
Thompson, L. (2014). Residents split on parkland bike trails. Seattle Times, July 28.
Tucker, T. An Environmental justice (EJ) teaching resource: Inventory and analysis of current practices in College EJ Education. Seattle University.
Article reprinted from Urban Environmental Education, an e-book published by the North American Association for Environmental Education (NAAEE). Downloadable at http://www.naaee.net/publications.
by editor | Mar 26, 2015 | Questioning strategies
Is Science Communication? Can students, moving around and talking, do science?

by Jim Martin
CLEARING Associate Editor
You’re trying to answer a question. Student work groups have designed their own investigations to understand the question, develop inquiries to investigate what they have found and thought about, then present their findings to the other work groups in a symposium. There are many processes going on here. Let’s look at a few as they engage them to see what emerges in addition to discovering and testing possible answers to the original question.
Start small. In groups, you help students learn to communicate effectively. How to say, “Here’s what I think, and why;” and to listen and respond when other group members do the same. This is very basic to developing effective work groups. You have them keep notes on these conversations, and use them to elicit concepts, plan work, etc. (Basic, but essential. They need to know why they think what they do, and make what they think and why clear to others. And to learn to be advised or informed by others in their group.)
When your groups are communicating effectively, you observe for outcomes of their collaborative discussions. Do they understand their data, its patterns, its shape in graphs, etc. Are they showing signs of being able to relate data patterns to their question: Is it answered? What is the convincing evidence? What if the evidence doesn’t support their guesses about the answer to question? Or, does their question itself come into question? Are they becoming less mechanical and more purposeful in their work?
Further questions can move the groups along the learning curve by developing their critical thinking capacities: Are their interpretations of data supported by evidence? How confident are they of their data? Can they explain or justify data interpretations they have made, and their validity? What do their interpretations say about possible next steps?
You can continue to build on this conceptual foundation, each step easier because the foundation is becoming broad and more stable. You have them assess the design of their investigation and interpretations of data: How certain are they that they got the right data and used the best techniques of data acquisition? How certain are they that their data do, in fact, tell them what they need to know? Has their knowledge and expertise increased during this process? How much do they really know? Questions like these will tend to focus their thoughts on how they are learning and doing. Metacognition. Students who know how to learn know how to learn. Communication within effective work groups helps generate this capacity.
When they are ready, you have the groups report in a symposium. This is where their communication skills will be called upon to build conceptual understandings. How familiar are they with their evidence and its interpretation? How well do they comprehend other groups’ data and interpretations? How well do they generalize what they’ve learned and developed about collaborative communication within their work groups? Do they move it outward to carry on effective discussion with all of the work groups in the class? When an entire class develops the capacity to engage in substantive conversation about what they are learning, they’ll learn and nail down more than you could ever teach them using the publishers’ prepared materials and recommendations in the Teachers’ Editions.
Learning about science, but not doing science, does not develop the capacities described here. By only collecting and reporting data, students don’t engage the critical thinking capacities of their brain. I’ve observed science classes in which students looked up the boiling point of a liquid, say water, boiled the liquid and noted that it did boil at that temperature. What do they communicate amongst themselves? Is communication actually involved here? Or, are they simply engaging a perfunctory ritual? Might they have learned more if they had heated 3 or 4 liquids, noted their boiling points (or figured out how they’d know the boiling points, then test that), then looked up boiling points and made a guess about what their liquids were?)
Nor do they develop their capacity for conceptual learning when they simply learn about science, and commit science facts to memory. When students do engage in self-directed inquiries, examine the relevance of their collected data, critique it and the process of collecting it, and formulate interpretations they agree upon, they become involved and invested in the work, and empowered as persons. Engaging life. Engaged students are learning students. What our schools need today.
There’s not a lot of information out there on how to engage this part of teaching. There should be. This kind of work supports critical thinking, so it is of value. Critical thinking uses a part of the cortex that is especially well-organized for conceptual learning. That’s the prefrontal cortex, where relevant information from associative memories throughout the brain are brought together in working memory to nail down this new learning, then send it back out to associative memory; not as a fact to memorize for a test then forget, but as something more akin to common sense – something integrated into associative memory that you ‘just know.’
This critical thinking system turns on when you ask a question that is meaningful to you, and seek an answer to it. Science inquiry is a perfect complement and extension of this cortical learning system. In contrast, learning simply to prepare for a test won’t, of itself, entrain critical thinking. Instead, because of its aversive nature, learning content in order to answer test questions is accompanied by some level of anxiety, and entrains the limbic system, which isn’t good at engaging critical thinking. At least in this context, learning facilitated by anxiety about passing a test.
As the Common Core State Standards (CCSS) and Next Generation Science Standards (NGSS) continue to influence teachers’ and students’ experience in school, they present some level of anxiety to many, whether from an unfamiliar expectation for performance, change from structured, curriculum-directed teaching and learning to a more open-ended, active learning model, or from increased paperwork and accounting with no accommodating increase in free time for such work. Anxiety is processed through the limbic system, which impacts how the brain learns; which of its resources are freed for the task. As student and teacher stress levels increase, it becomes increasingly difficult to engage critical thinking. Instead, the limbic system, busy processing anxiety, increasingly limits communication with the prefrontal cortex, where critical thinking does its work. Instead, learning is limited to simple thoughts, which remain connected solely to the need to pass questions on a test, with little or no integration into associative memory, as occurs in critical thinking.
On the other hand, when students and teachers are free to explore new learnings (which the CCSS and NGSS seem to be interested in), to ask questions and seek answers to them, the limbic system supports this work with a heightened sense of pleasure and excitement, and feelings of well-being and inquisitiveness. And by assuring the doors to the prefrontal cortex are open.The different limbic involvements in learning are entrained by the properties of the learning environment. As they were when our brain evolved in the savannah during the Pleistocene. Might we use that history to revisit how we teach? How we organize student-student interactions while they learn? In the classroom and on-site in the natural world? In these cases, the limbic supports the work of the cortex, especially the prefrontal cortex, where working memory resides, and the brain’s conscious executive functions do their work. Work in which goals direct effort, reasoning and abstract thought are supported, and critical thinking takes place. Where we actively construct knowledge and commit it to long-term associative memory; ask questions, design investigations, develop needs-to-know which drive us into the information we seek, desire to complete and communicate our work.
When we are driven only by anxiety about not being able to answer questions on tests, this wonderful part of our brain is lost to us. The limbic system limits its use, and we simply memorize disconnected bits of information long enough to use them on a test, then forget. Are we teaching for fight or flight, or for higher-order critical thinking?
Used knowledgably, communication as practiced in doing science has the capacity to produce a foundation for critical thinking. By the information it generates, the testing of the information, and its processing and communication, it involves and invests students in critical thinking; in using their prefrontal cortex, its executive and working memory functions. The key feature is that the students, not the teacher, are involved in constructing knowledge. The teacher, while responsible for producing an environment where a constructivist approach to learning will probably happen, becomes a facilitator of their work. A difficult transition for many of us to make. I went into it willingly, but once committed, sorely missed lecturing and wowing students with the wondrous things I could show them in the lab. In spite of this, when I would pull out my old lesson plans, it would be immediately clear to me that this constructivist model was much, much more effective and empowering. And I eventually discovered this was because it used those sites and connections in the brain which were organized to engage conceptual learning. Something my pre-service and graduate education in teaching never addressed. It should have. Had it, and we learned as our brain is organized to learn, we just might have learned well.
Communication, when it is substantive, has the capacity to facilitate critical thinking. It does this by requiring us to consider what we are saying and doing, which is a readily useable road to the prefrontal cortex and working memory. Sort of like working in a shared workspace, a place with all the resources and facilities you need to focus on what you are learning, and the executive capacity to follow up on what you have learned.
This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests,and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”
by editor | Jan 21, 2015 | Place-based Education, Questioning strategies
Were You Assigned A Class You Have No Background or Preparation to Teach?
by Jim Martin
CLEARING Associate Editor
ne year, I worked with a middle-school mathematics teacher who decided to engage his class in some work on a wetland and lake bordering a large river. He did this partly as a diversion from classroom struggles – his background and training weren’t in middle school mathematics; there was no one else available to do the work. And, he was interested in the concept of engaging his students in their community – project-based learning.
So, we went down to the site and took a tour. As we walked and talked, he suddenly stopped, took a few steps back, and stood looking down a shallow slope to the lake, then up the slope toward a wooded copse. I waited a few moments, then he remarked in an excited voice that everything changed as you looked from the water to the slope, and on up to the trees. He said something made that change, and it had to do with the slope. Then, he described what students would explore on a transect along the slope, and how. Wow! His class did the project, and, within two years, he developed into a very effective teacher.
What happened here? He knew he wanted to do something. He knew where he was in his mathematics teaching. And he was interested in his students. But he didn’t get any further until he took a walk, talked about what was there and what students had done, and noticed a slope – geological and mathematical – and, in terms of subsequent progress as a teacher, clarivoyant. The pieces of the puzzle suddenly came together.
How do we move from teaching our curricula one piece at a time, a disconnected clutter of disparate parts? Parts, learned long enough to refer to in a test; then, lost in a long trail of discarded artifacts. We need clear, strong trails if we are to lead effective, self-actualized lives. Learning has the potential to help us organize our selves so that our lives produce clear, permanent trails. In his teaching the middle school mathematics teacher began to build these clear trails, both for himself, and for his students. Part of the secret is learning about the curriculum in the real world, and its connection to the disparate clutter of artifacts we teach. In the classroom and on environmental education sites. I suggest we need to integrate them.
One thing this teacher did was to let the class in on the plan. Doing this at the start involved and invested them in the work, and began to empower them to take responsibility for its parts. Early on, he began to notice that students were doing good work, and that they brought different sets of skills and abilities to the work. This was a pleasant surprise for him, and he began to see the class as a group of individuals who could make the classroom work environment an interesting one to be part of.
Soon enough, he reorganized the class into work crews, each one responsible for part of the job of assessing a transect up the slope from water’s edge to wooded copse. Accomplishing this was an utterly new experience for him, but he took to it as if he’d done it for years. Within a few weeks, he was beginning to coordinate his curriculum to the work on the slope. Aware of the mathematics curricula he was charged with, he organized the school week into days dedicated to mathematics and to the project. Students didn’t divide their new sense of personal investment in school. They became reliable students each day. Why? I think, because they were learning as humans evolved to learn. How their brain is best organized to do that job. Go into the real world, find real work to do, then focus all resources on this.
I think there were several vehicles which enabled this classroom to navigate from struggling to self-powered learning place. Specifics varied among teacher and students, but each vehicle carried them through its part of the course. The teacher was charged with teaching mathematics, for which he wasn’t well-prepared to do. He was both interested in improving his teaching, and in engaging his students in learning projects in the community in which they lived. Then he saw something, a slope in a landform, that brought these two seemingly disparate entities into a dynamic construct, a conceptual foundation for real learning, learning for understanding.
His students also boarded their first vehicles: crews, embedded curricula, brain work. At first, their commitment varied, but nearly all became interested in the project when they heard about it from the teacher. At the beginning, they were randomly assigned to their groups; but, as the teacher became more aware of them as individuals, he began to reorganize them into effective working groups, crews organized to execute particular parts of the plan.
So, the relationships among the people in the class began to morph. The teacher became the project manager, and the crews became technicians and staff working with a crew leader. Project manager and crews learned to reach out to local experts for advice. The teacher, because he was managing the project, and feeling responsible for teaching mathematics, began to use the mathematics embedded in the work site and the work itself to deliver part of his curriculum.
Locating embedded curricula seems difficult at first thought, but once you try, it becomes relatively easy. For instance, students can measure the maximum width and length of a leaf, and calculate the width to length ratio. They repeat this with other leaves from the same tree to see if that ratio holds true. Then they can see if there is a ratio for the maximum width of a fir or pine cone and its length that is consistent among a sample from the same species. As they do, ratio and proportion becomes sensible, a conceptual tool to use, rather than something to memorize for a test.
This doesn’t apply just to mathematics and science. Look for examples of alliteration in a natural area or in the school’s neighborhood. I’m looking at an example just now – a small tree whose leaves are attached to thin branches in an alternating sequence. When I see a set silhouetted against the sky, their leaves tripping along the branch, I see alliteration. Looking out the same window, I see many metaphors. Metaphors which can activate the same parts of my brain that are activated when I am engaged in close pursuit of the answer to an inquiry question. A very useful brain tool.
Looking past the leaves and metaphors, I see examples of social studies, music, art, drama, history. It’s all out there, the curricula we teach, in a form our brain is organized to use. Once it is engaged, we can then move into the prepared curricula which lives in classrooms. With one difference – this curricula will come to life because it will be engaged by a need-to-know generated by the world we live in. And learned in a way that ensures it will be used. In time, you will find that you can milk the prizes found on one excursion from the classroom to the schoolground, neighborhood, or riparian area for more than the embedded curricula you find. What you find and use generally has links to other curricula, and you can extend these threads quite far before you’ve either used them up, or have become tired of them.
These are things the teacher I worked with learned during the time we explored learning for understanding. By moving into the world we live in and discovering the curricula embedded there, and the involvement and investment the experience invoked in his students, he began to reorganize his teaching. The mathematics he discovered on site clarified what he was trying to teach in the classroom. The energy and growing expertise his students brought to the work helped him learn them as persons, to know when they engaged what I call the moment of learning, and to use their individual strengths to overcome their weaknesses. And they all grew. Because, in my opinion, they engaged their brains in the way brains evolved to learn and cope. Once engaged, they were ready to enter the more formal, abstract curricula which lived in their classroom. To learn it, not to pass a test, but to build their lives.
This is a regular feature by CLEARING “master teacher” Jim Martin that explores how environmental educators can help classroom teachers get away from the pressure to teach to the standardized tests,and how teachers can gain the confidence to go into the world outside of their classrooms for a substantial piece of their curricula. See the other installments here, or search Categories for “Jim Martin.”